Displaying all 9 publications

Abstract:
Sort:
  1. Ma NL, Rahmat Z, Lam SS
    Int J Mol Sci, 2013 Apr 08;14(4):7515-41.
    PMID: 23567269 DOI: 10.3390/ijms14047515
    Physiological and ecological constraints that cause the slow growth and depleted production of crops have raised a major concern in the agriculture industry as they represent a possible threat of short food supply in the future. The key feature that regulates the stress signaling pathway is always related to the reactive oxygen species (ROS). The accumulation of ROS in plant cells would leave traces of biomarkers at the genome, proteome, and metabolome levels, which could be identified with the recent technological breakthrough coupled with improved performance of bioinformatics. This review highlights the recent breakthrough in molecular strategies (comprising transcriptomics, proteomics, and metabolomics) in identifying oxidative stress biomarkers and the arising opportunities and obstacles observed in research on biomarkers in rice. The major issue in incorporating bioinformatics to validate the biomarkers from different omic platforms for the use of rice-breeding programs is also discussed. The development of powerful techniques for identification of oxidative stress-related biomarkers and the integration of data from different disciplines shed light on the oxidative response pathways in plants.
  2. Ooi YY, Rahmat Z, Jose S, Ramasamy R, Vidyadaran S
    World J Stem Cells, 2013 Jan 26;5(1):34-42.
    PMID: 23362438 DOI: 10.4252/wjsc.v5.i1.34
    To assess the capacity to isolate and expand mesenchymal stem cells (MSC) from bone marrow of CBA/Ca, ICR and Balb/c mice.
  3. Ooi YY, Ramasamy R, Rahmat Z, Subramaiam H, Tan SW, Abdullah M, et al.
    Int Immunopharmacol, 2010 Dec;10(12):1532-40.
    PMID: 20850581 DOI: 10.1016/j.intimp.2010.09.001
    The immunoregulatory properties of mesenchymal stem cells (MSC) have been demonstrated on a wide range of cells. Here, we describe the modulatory effects of mouse bone marrow-derived MSC on BV2 microglia proliferation rate, nitric oxide (NO) production and CD40 expression. Mouse bone marrow MSC were co-cultured with BV2 cells at various seeding density ratios and activated with lipopolysaccharide (LPS). We show that MSC exert an anti-proliferative effect on microglia and are potent producers of NO when stimulated by soluble factors released by LPS-activated BV2. MSC suppressed proliferation of both untreated and LPS-treated microglia in a dose-dependent manner, significantly reducing BV2 proliferation at seeding density ratios of 1:0.2 and 1:0.1 (p
  4. Ling HL, Rahmat Z, Murad AMA, Mahadi NM, Illias RM
    Data Brief, 2017 Oct;14:35-40.
    PMID: 28761915 DOI: 10.1016/j.dib.2017.07.026
    Bacillus lehensis G1 is a cyclodextrin glucanotransferase (CGTase) producer, which can degrade starch into cyclodextrin. Here, we present the proteomics data of B. lehensis cultured in starch-containing medium, which is related to the article "Proteome-based identification of signal peptides for improved secretion of recombinant cyclomaltodextrin glucanotransferase in Escherichia coli" (Ling et. al, in press). This dataset was generated to better understand the secretion of proteins involved in starch utilization for bacterial sustained growth. A 2-DE proteomic technique was used and the proteins were tryptically digested followed by detection using MALDI-TOF/TOF. Proteins were classified into functional groups using the information available in SubtiList webserver (http://genolist.pasteur.fr/SubtiList/).
  5. Ling HL, Rahmat Z, Bakar FDA, Murad AMA, Illias RM
    Microbiol Res, 2018 Oct;215:46-54.
    PMID: 30172308 DOI: 10.1016/j.micres.2018.06.006
    Bacillus lehensis G1 is an alkaliphilic bacterium that is capable of surviving in environments up to pH 11. Secretome related to bacterial acclimation in alkaline environment has been less studied compared to cytoplasmic and membrane proteome. The aim of this study was to gain better understanding of bacterial acclimation to alkaline media through analyzing extracellular proteins of B. lehensis. The pH range for B. lehensis growth was conducted, and two-dimensional electrophoresis and MALDI-TOF/TOF MS analysis were conducted to characterize changes in protein profiling in B. lehensis cultured at pH 8 and pH 11 when compared with those cultured at pH 10 (optimal growth pH). B. lehensis could grow well at pH ranging from 8 to 11 in which the bacteria showed to posses thinner flagella at pH 11. Proteomic analyses demonstrated that five proteins were up-regulated and 13 proteins were down-regulated at pH 8, whereas at pH 11, 14 proteins were up-regulated and 8 were down-regulated. Majority of the differentially expressed proteins were involved in the cell wall, main glycolytic pathways, the metabolism of amino acids and related molecules and some proteins of unknown function. A total of 40 differentially expressed protein spots corresponding to 33 proteins were identified; including GlcNAc-binding protein A, chitinase, endopeptidase lytE, flagellar hook-associated proteins and enolase. These proteins may play important roles in acclimation to alkaline media via reallocation of cell wall structure and changes to cell surface glycolytic enzymes, amino acid metabolism, flagellar hook-associated proteins and chaperones to sustain life under pH-stressed conditions.
  6. Mohd Din AR, Iliyas Ahmad F, Wagiran A, Abd Samad A, Rahmat Z, Sarmidi MR
    Saudi J Biol Sci, 2016 Jan;23(1):S69-77.
    PMID: 26858569 DOI: 10.1016/j.sjbs.2015.10.022
    A new and rapid protocol for optimum callus production and complete plant regeneration has been assessed in Malaysian upland rice (Oryza sativa) cv. Panderas. The effect of plant growth regulator (PGR) on the regeneration frequency of Malaysian upland rice (cv. Panderas) was investigated. Mature seeds were used as a starting material for callus induction experiment using various concentrations of 2,4-D and NAA. Optimal callus induction frequency at 90% was obtained on MS media containing 2,4-D (3 mg L(-1)) and NAA (2 mg L(-1)) after 6 weeks while no significant difference was seen on tryptophan and glutamine parameters. Embryogenic callus was recorded as compact, globular and light yellowish in color. The embryogenic callus morphology was further confirmed with scanning electron microscopy (SEM) analysis. For regeneration, induced calli were treated with various concentrations of Kin (0.5-1.5 mg L(-1)), BAP, NAA and 0.5 mg L(-1) of TDZ. The result showed that the maximum regeneration frequency (100%) was achieved on MS medium containing BAP (0.5 mg L(-1)), Kin (1.5 mg L(-1)), NAA (0.5 mg L(-1)) and TDZ (0.5 mg L(-1)) within four weeks. Developed shoots were successfully rooted on half strength MS free hormone medium and later transferred into a pot containing soil for acclimatization. This cutting-edge finding is unique over the other existing publishable data due to the good regeneration response by producing a large number of shoots.
  7. Abd Rahman NH, Rahman RA, Rahmat Z, Jaafar NR, Puspaningsih NNT, Illias RM
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128260.
    PMID: 38000618 DOI: 10.1016/j.ijbiomac.2023.128260
    Pectinases are outstanding multienzymes, which have the potential to produce new emerging pectic-oligosaccharides (POS) via enzymatic hydrolysis of pectin. However, free pectinase is unable to undergo repeated reaction for the production of POS. This study proposed a sustainable biocatalyst of pectinases known as cross-linked pectinase aggregates (CLPA). Pectinase from Aspergillus aculeatus was successfully precipitated using 2 mg/mL pectinase and 60 % acetone for 20 min at 20 °C, which remained 36.3 % of its initial activity. The prepared CLPA showed the highest activity recovery (85.0 %), under the optimised conditions (0.3 % (v/v) starch and glutaraldehyde mixture (St/Ga), 1.5: 1 of St/Ga, 25 °C, 1.5 h). Furthermore, pectin-degrading enzymes from various sources were used to produce different CLPA. The alteration of pectinase secondary structure gave high stability in acidic condition (pH 4), thermostability, deactivation energy and half-life, and improved storage stability at 4 °C for 30 days. Similarly to their free counterpart, the CLPA exhibited comparable enzymatic reaction kinetics and could be reused eight times with approximately 20 % of its initial activity. The developed CLPA does not only efficaciously produced POS from pectin as their free form, but also exhibited better operational stability and reusability, making it more suitable for POS production.
  8. Ma NL, Peng W, Soon CF, Noor Hassim MF, Misbah S, Rahmat Z, et al.
    Environ Res, 2021 Feb;193:110405.
    PMID: 33130165 DOI: 10.1016/j.envres.2020.110405
    The recently emerged coronavirus disease (COVID-19), which has been characterised as a pandemic by the World Health Organization (WHO), is impacting all parts of human society including agriculture, manufacturing, and tertiary sectors involving all service provision industries. This paper aims to give an overview of potential host reservoirs that could cause pandemic outbreak caused by zoonotic transmission. Amongst all, continues surveillance in slaughterhouse for possible pathogens transmission is needed to prevent next pandemic outbreak. This paper also summarizes the potential threats of pandemic to agriculture and aquaculture sector that control almost the total food supply chain and market. The history lesson from the past, emerging and reemerging infectious disease including the Severe Acute Respiratory Syndrome (SARS) in 2002, Influenza A H1N1 (swine flu) in 2009, Middle East Respiratory Syndrome (MERS) in 2012 and the recent COVID-19 should give us some clue to improve especially the governance to be more ready for next coming pandemic.
  9. Ma NL, Che Lah WA, Abd Kadir N, Mustaqim M, Rahmat Z, Ahmad A, et al.
    PLoS One, 2018;13(2):e0192732.
    PMID: 29489838 DOI: 10.1371/journal.pone.0192732
    Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants) is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14) and most susceptible line (SS2-18) to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX) and catalase (CAT) were significantly higher in the sensitive line while superoxide dismutase (SOD) was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA) score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links