Affiliations 

  • 1 Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
  • 2 Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
  • 3 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Global Health Research (CGHR), Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India. Electronic address: lam@umt.edu.my
  • 4 Aarhus University, Department of Ecoscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
  • 5 Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, Karnataka, India; University Center for Research & Development (UCRO), Chandigarh University, Gharuan, Mohali 140413, Punjab, India
  • 6 Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China. Electronic address: changlei.xia@njfu.edu.cn
Sci Total Environ, 2024 Feb 20;912:168873.
PMID: 38016558 DOI: 10.1016/j.scitotenv.2023.168873

Abstract

Potentially toxic metal-polluted water resources are a heavily discussed topic the pollution by potentially toxic metals can cause significant health risks. Nanomaterials are actively developed towards providing high specific surface area and creating active adsorption sites for the treatment and remediation of these polluted waters. In an effort to tackle the limitations of conventional type adsorbents, nano-hydroxyapatite (HAp) was developed in this study by in situ generation onto wood powder, resulting in the formation of uniform hybrid powder (HAp@wood composite) structure consisting of HAp nanoparticles that showed the removal efficiency up to 80 % after 10 min; the maximum adsorption capacity for Cu(II) ions (98.95 mg/g-HAp) was higher compared to agglomerated nano-HAp (72.85 mg/g-HAp). The adsorption capacity of Cu(II) remained stable (89.85-107.66 mg/g-HAp) during the four adsorption-desorption cycles in multi-component system, thereby demonstrating high selectivity for Cu(II). This approach of using nanoparticle is relatively simple yet effective in improving the adsorption of potentially toxic metals and the developed approach can be used to develop advanced nanocomposites in commercial wastewater treatment.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.