Affiliations 

  • 1 PETRONAS Research Sdn Bhd (PRSB), Jalan Ayer Hitam, Bangi Government and Private Training Centre Area, 43000, Bandar Baru Bangi, Selangor, Malaysia; Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia
  • 2 Advanced Membrane Materials Research Center, Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
  • 3 Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
  • 4 Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia
  • 5 Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan; Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan, 70101, Taiwan
  • 6 Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya, Kuala Lumpur, Malaysia; Faculty of Engineering, Technology and Built Environment, UCSI University, Cheras, 56000, Kuala Lumpur, Malaysia. Electronic address: jcjuan@um.edu.my
Chemosphere, 2024 Feb;349:140890.
PMID: 38072201 DOI: 10.1016/j.chemosphere.2023.140890

Abstract

There is much interest in developing metal-free halogenated graphene such as fluorinated graphene for various catalytic applications. In this work, a fluorine-doped graphene oxide photocatalyst was investigated for photocatalytic oxidation (PCO) of a volatile organic compound (VOC), namely gaseous methanol. The fluorination process of graphene oxide (GO) was carried out via a novel and facile solution-based photoirradiation method. The fluorine atoms were doped on the surface of the GO in a semi-ionic C-F bond configuration. This presence of the semi-ionic C-F bonds induced a dramatic 7-fold increment of the hole charge carrier density of the photocatalyst. The fluorinated GO photocatalyst exhibited excellent photodegradation up to 93.5% or 0.493 h-1 according pseudo-first order kinetics for methanol. In addition, 91.7% of methanol was mineralized into harmless carbon dioxide (CO2) under UV-A irradiation. Furthermore, the photocatalyst demonstrated good stability in five cycles of methanol PCO. Besides methanol, other VOCs such as acetone and formaldehyde were also photodegraded. This work reveals the potential of fluorination in producing effective graphene-based photocatalyst for VOC removal.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.