Displaying publications 1 - 20 of 92 in total

  1. Li D, Faiza M, Ali S, Wang W, Tan CP, Yang B, et al.
    Appl Biochem Biotechnol, 2018 Apr;184(4):1061-1072.
    PMID: 28948493 DOI: 10.1007/s12010-017-2594-1
    A highly efficient process for reducing the fatty acid (FA) content of high-acid rice bran oil (RBO) was developed by immobilized partial glycerides-selective lipase SMG1-F278N-catalyzed esterification/transesterification using methanol as a novel acyl acceptor. Molecular docking simulation indicated that methanol was much closer to the catalytic serine (Ser-171) compared with ethanol and glycerol, which might be one of the reasons for its high efficiency in the deacidification of high-acid RBO. Additionally, the reaction parameters were optimized to minimize the FA content of high-acid RBO. Under the optimal conditions (substrate molar ratio of methanol to FAs of 1.8:1, enzyme loading of 40 U/g, and at 30 °C), FA content decreased from 25.14 to 0.03% after 6 h of reaction. Immobilized SMG1-F278N exhibited excellent methanol tolerance and retained almost 100% of its initial activity after being used for ten batches. After purification by molecular distillation, the final product contained 97.86% triacylglycerol, 2.10% diacylglycerol, and 0.04% FA. The acid value of the final product was 0.09 mg KOH/g, which reached the grade one standard of edible oil. Overall, methanol was a superior acyl acceptor for the deacidification of high-acid RBO and the high reusability of immobilized SMG1-F278N indicates an economically attractive process.
    Matched MeSH terms: Methanol/chemistry*
  2. Kai T, Mak GL, Wada S, Nakazato T, Takanashi H, Uemura Y
    Bioresour Technol, 2014 Jul;163:360-3.
    PMID: 24813567 DOI: 10.1016/j.biortech.2014.04.030
    In this study, a novel method for the production of biodiesel under mild conditions using fine particles of sodium methoxide formed in dimethyl carbonate (DMC) is proposed. Biodiesel is generally produced from vegetable oils by the transesterification of triglycerides with methanol. However, this reaction produces glycerol as a byproduct, and raw materials are not effectively utilized. Transesterification with DMC has recently been studied because glycerol is not formed in the process. Although solid-state sodium methoxide has been reported to be inactive for this reaction, the catalytic activity dramatically increased with the preparation of fine catalyst powders by crystallization. The transesterification of canola oil with DMC was studied using this catalyst for the preparation of biodiesel. A conversion greater than 96% was obtained at 65°C for 2h with a 3:1M ratio of DMC and oil and 2.0 wt% catalyst.
    Matched MeSH terms: Methanol/chemistry*
  3. Syam AM, Hamid HA, Yunus R, Rashid U
    ScientificWorldJournal, 2013;2013:268385.
    PMID: 24363616 DOI: 10.1155/2013/268385
    Many kinetics studies on methanolysis assumed the reactions to be irreversible. The aim of the present work was to study the dynamic modeling of reversible methanolysis of Jatropha curcas oil (JCO) to biodiesel. The experimental data were collected under the optimal reaction conditions: molar ratio of methanol to JCO at 6 : 1, reaction temperature of 60°C, 60 min of reaction time, and 1% w/w of catalyst concentration. The dynamic modeling involved the derivation of differential equations for rates of three stepwise reactions. The simulation study was then performed on the resulting equations using MATLAB. The newly developed reversible models were fitted with various rate constants and compared with the experimental data for fitting purposes. In addition, analysis of variance was done statistically to evaluate the adequacy and quality of model parameters. The kinetics study revealed that the reverse reactions were significantly slower than forward reactions. The activation energies ranged from 6.5 to 44.4 KJ mol⁻¹.
    Matched MeSH terms: Methanol/chemistry*
  4. Lim S, Lee KT
    Bioresour Technol, 2013 Aug;142:121-30.
    PMID: 23735793 DOI: 10.1016/j.biortech.2013.05.010
    In this study, optimization of supercritical reactive extraction directly from Jatropha seeds in a high pressure batch reactor using Response Surface Methodology (RSM) coupled with Central Composite Rotatable Design (CCRD) was performed. Four primary variables (methanol to solid ratio (SSR), reaction temperature, time and CO2 initial pressure) were investigated under the proposed constraints. It was found that all variables had significant effects towards fatty acid methyl esters (FAME) yield. Moreover, three interaction effects between the variables also played a major role in influencing the final FAME yield. Optimum FAME yield at 92.0 wt.% was achieved under the following conditions: 5.9 SSR, 300°C, 12.3 min and 20 bar CO2. Final FAME product was discovered to fulfil existing international standard. Preliminary characterization analysis proved that the solid residue can be burnt as solid fuel in the form of biochar while the liquid product can be separated as specialty chemicals or burned as bio-oil for energy production.
    Matched MeSH terms: Methanol/chemistry*
  5. Yaakob Z, Sukarman IS, Narayanan B, Abdullah SR, Ismail M
    Bioresour Technol, 2012 Jan;104:695-700.
    PMID: 22113069 DOI: 10.1016/j.biortech.2011.10.058
    Transesterification reaction of Jatropha curcas oil with methanol was carried out in the presence of ash generated from Palm empty fruit bunch (EFB) in a heterogeneous catalyzed process. The ash was doped with KOH by impregnation to achieve a potassium level of 20 wt.%. Under optimum conditions for the EFB-catalyzed (65 °C, oil/methanol ratio of 15, 90 min, 20 wt.% EFB ash catalyst) and the KOH-EFB-catalyzed reactions (65 °C, oil/methanol ratio of 15, 45 min, 15 wt.% of KOH doped EFB ash), biodiesel (>98%) with specifications higher than those stipulated by European biodiesel quality standard EN 14214 was obtained.
    Matched MeSH terms: Methanol/chemistry*
  6. Syahmi AR, Vijayarathna S, Sasidharan S, Latha LY, Kwan YP, Lau YL, et al.
    Molecules, 2010 Nov;15(11):8111-21.
    PMID: 21072022 DOI: 10.3390/molecules15118111
    Elaeis guineensis (Arecaceae) is widely used in West African traditional medicine for treating various ailments. An evaluation on the toxicity of extracts of this plant is crucial to support the therapeutic claims. The acute oral toxicity and brine shrimp lethality of a methanolic extract of this plant was tested. Oral administration of crude extract at the highest dose of 5,000 mg/kg resulted in no mortalities or evidence of adverse effects, implying that E. guineensis is nontoxic. Normal behavioral pattern, clinical signs and histology of vital organs confirm this evidence. The E. guineensis extracts screened for toxicity against brine shrimp had 50% lethal concentration (LC₅₀) values of more than 1.0 mg/mL (9.00 and 3.87 mg/mL, at 6 and 24 h, respectively), confirming that the extract was not toxic. Maximum mortalities occurred at 100 mg/mL concentration while the least mortalities happened to be at 0.195 mg/mL concentration. The results of both tests confirm that E. guineensis is nontoxic and hence safe for commercial utilization.
    Matched MeSH terms: Methanol/chemistry*
  7. Al-Adhroey AH, Nor ZM, Al-Mekhlafi HM, Amran AA, Mahmud R
    Molecules, 2010 Dec 28;16(1):107-18.
    PMID: 21189459 DOI: 10.3390/molecules16010107
    The need for new compounds active against malaria parasites is made more urgent by the rapid spread of drug-resistance to available antimalarial drugs. The crude methanol extract of Piper betle leaves (50-400 mg/kg) was investigated for its antimalarial activity against Plasmodium berghei (NK65) during early and established infections. The phytochemical and antioxidant potentials of the crude extract were evaluated to elucidate the possibilities of its antimalarial effects. The safety of the extract was also investigated in ICR mice of both sexes by the acute oral toxicity limit test. The leaf extract demonstrated significant (P < 0.05) schizonticidal activity in all three antimalarial evaluation models. Phytochemical screening showed that the leaf extract contains some vital antiplasmodial chemical constituents. The extract also exhibited a potent ability to scavenge the free radicals. The results of acute toxicity showed that the methanol extract of Piper betle leaves is toxicologically safe by oral administration. The results suggest that the Malaysian folklorical medicinal application of the extract of Piper betle leaf has a pharmacological basis.
    Matched MeSH terms: Methanol/chemistry*
  8. Atkins MP, Earle MJ, Seddon KR, Swadźba-Kwaśny M, Vanoye L
    Chem Commun (Camb), 2010 Mar 14;46(10):1745-7.
    PMID: 20177636 DOI: 10.1039/b923250h
    Selected Brønsted acidic ionic liquids were tested as homogeneous catalysts for the dehydration of methanol to dimethyl ether. Ionic liquids incorporating an alkanesulfonic acid as a part of the cation, a complex acidic anion, [A(2)H](-), or both, proved to be good catalysts for this process, providing high conversions and selectivities. Homogeneous catalysis in the liquid state represents a novel approach to dimethyl ether synthesis.
    Matched MeSH terms: Methanol/chemistry*
  9. Thandavan TM, Gani SM, San Wong C, Md Nor R
    PLoS One, 2015;10(3):e0121756.
    PMID: 25756598 DOI: 10.1371/journal.pone.0121756
    Vapor phase transport (VPT) assisted by mixture of methanol and acetone via thermal evaporation of brass (CuZn) was used to prepare un-doped and Al-doped zinc oxide (ZnO) nanostructures (NSs). The structure and morphology were characterized by field emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). Photoluminescence (PL) properties of un-doped and Al-doped ZnO showed significant changes in the optical properties providing evidence for several types of defects such as zinc interstitials (Zni), oxygen interstitials (Oi), zinc vacancy (Vzn), singly charged zinc vacancy (VZn-), oxygen vacancy (Vo), singly charged oxygen vacancy (Vo+) and oxygen anti-site defects (OZn) in the grown NSs. The Al-doped ZnO NSs have exhibited shifted PL peaks at near band edge (NBE) and red luminescence compared to the un-doped ZnO. The Raman scattering results provided evidence of Al doping into the ZnO NSs due to peak shift from 145 cm-1 to an anomalous peak at 138 cm-1. Presence of enhanced Raman signal at around 274 and 743 cm-1 further confirmed Al in ZnO NSs. The enhanced D and G band in all Al-doped ZnO NSs shows possible functionalization and doping process in ZnO NSs.
    Matched MeSH terms: Methanol/chemistry*
  10. Baharum Z, Akim AM, Taufiq-Yap YH, Hamid RA, Kasran R
    Molecules, 2014 Nov 10;19(11):18317-31.
    PMID: 25389662 DOI: 10.3390/molecules191118317
    The aims of this study were to determine the antioxidant and antiproliferative activity of the following Theobroma cacao plant part methanolic extracts: leaf, bark, husk, fermented and unfermented shell, pith, root, and cherelle. Antioxidant activity was determined using 2,2-diphenyl-2-picrylhydrazyl (DPPH), thiobarbituric acid-reactive substances (TBARS), and Folin-Ciocalteu assays; the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) assay was used to determine antiproliferative activity. The root extract had the highest antioxidant activity; its median effective dose (EC50) was 358.3±7.0 µg/mL and total phenolic content was 22.0±1.1 g GAE/100 g extract as compared to the other methanolic plant part extracts. Only the cherelle extract demonstrated 10.4%±1.1% inhibition activity in the lipid peroxidation assay. The MTT assay revealed that the leaf extract had the highest antiproliferative activity against MCF-7 cells [median inhibitory concentration (IC50)=41.4±3.3 µg/mL]. Given the overall high IC50 for the normal liver cell line WRL-68, this study indicates that T. cacao methanolic extracts have a cytotoxic effect in cancer cells, but not in normal cells. Planned future investigations will involve the purification, identification, determination of the mechanisms of action, and molecular assay of T. cacao plant extracts.
    Matched MeSH terms: Methanol/chemistry*
  11. Basri S, Kamarudin SK, Daud WR, Yaakob Z, Kadhum AA
    ScientificWorldJournal, 2014;2014:547604.
    PMID: 24883406 DOI: 10.1155/2014/547604
    PtRu catalyst is a promising anodic catalyst for direct methanol fuel cells (DMFCs) but the slow reaction kinetics reduce the performance of DMFCs. Therefore, this study attempts to improve the performance of PtRu catalysts by adding nickel (Ni) and iron (Fe). Multiwalled carbon nanotubes (MWCNTs) are used to increase the active area of the catalyst and to improve the catalyst performance. Electrochemical analysis techniques, such as energy dispersive X-ray spectrometry (EDX), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and X-ray photoelectron spectroscopy (XPS), are used to characterize the kinetic parameters of the hybrid catalyst. Cyclic voltammetry (CV) is used to investigate the effects of adding Fe and Ni to the catalyst on the reaction kinetics. Additionally, chronoamperometry (CA) tests were conducted to study the long-term performance of the catalyst for catalyzing the methanol oxidation reaction (MOR). The binding energies of the reactants and products are compared to determine the kinetics and potential surface energy for methanol oxidation. The FESEM analysis results indicate that well-dispersed nanoscale (2-5 nm) PtRu particles are formed on the MWCNTs. Finally, PtRuFeNi/MWCNT improves the reaction kinetics of anode catalysts for DMFCs and obtains a mass current of 31 A g(-1) catalyst.
    Matched MeSH terms: Methanol/chemistry*
  12. Teh CH, Nazni WA, Lee HL, Fairuz A, Tan SB, Sofian-Azirun M
    Med. Vet. Entomol., 2013 Dec;27(4):414-20.
    PMID: 23650928 DOI: 10.1111/mve.12012
    The emergence of multidrug-resistant bacterial strains has prompted the reintroduction of maggot therapy in the treatment of chronic, infected wounds. Many previous studies have demonstrated the potent antibacterial activity of larval excretions/secretions of the blowfly Lucilia sericata (Meigen) (Diptera:Calliphoridae) against bacteria. However, the antibacterial activity of its sibling species, Lucilia cuprina (Wiedemann) (Diptera:Calliphoridae) against a wide range of pathogenic bacteria has never been determined. The aim of this study was to develop a new procedure to produce whole body extract of larvae of L. cuprina via methanol extraction as well as to demonstrate the in vitro antibacterial activity of this extract against seven selected wound pathogens (Staphylococcus aureus, methicillin-resistant S. aureus, S. epidermidis, Streptococcus pyogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli). The turbidimetric assay demonstrated that L. cuprina larval extract was significantly potent against all bacteria tested (P methanol extraction method in the production of larval extract.
    Matched MeSH terms: Methanol/chemistry*
  13. Abu Bakar NB, Makahleh A, Saad B
    Anal Chim Acta, 2012 Sep 12;742:59-66.
    PMID: 22884208 DOI: 10.1016/j.aca.2012.02.045
    An in-vial liquid-liquid microextraction method was developed for the selective extraction of the phenolic acids (caffeic, gallic, cinnamic, ferulic, chlorogenic, syringic, vanillic, benzoic, p-hydroxybenzoic, 2,4-dihydroxybenzoic, o-coumaric, m-coumaric and p-coumaric) in vegetable oil samples. The optimised extraction conditions for 20 g sample were: volume of diluent (n-hexane), 2 mL; extractant, methanol: 5 mM sodium hydroxide (60:40; v/v); volume of extractant, 300 μL (twice); vortex, 1 min; centrifugation, 5 min. Recoveries for the studied phenolic acids were 80.1-119.5%. The simultaneous determination of the phenolic acid extracts was investigated by capillary electrophoresis (CE). Separations were carried out on a bare fused-silica capillary (50 μm i.d.× 40 cm length) involving 25 mM sodium tetraborate (pH 9.15) and 5% methanol as CE background electrolyte in the normal polarity mode, voltage of 30 kV, temperature of 25°C, injection time of 4s (50 mbar) and electropherograms were recorded at 200 nm. The phenolic acids were successfully separated in less than 10 min. The validated in-vial LLME-CE method was applied to the determination of phenolic acids in vegetable oil samples (extra virgin olive oil, virgin olive oil, pure olive oil, walnut oil and grapeseed oil). The developed method shows significant advantages over the current methods as lengthy evaporation step is not required.
    Matched MeSH terms: Methanol/chemistry
  14. Ho WW, Ng HK, Gan S
    Bioresour Technol, 2012 Dec;125:158-64.
    PMID: 23026328 DOI: 10.1016/j.biortech.2012.08.099
    Novel heterogeneous catalysts from calcium oxide (CaO)/calcined calcium carbonate (CaCO(3)) loaded onto different palm oil mill boiler ashes were synthesised and used in the transesterification of crude palm oil (CPO) with methanol to yield biodiesel. Catalyst preparation parameters including the type of ash support, the weight percentage of CaO and calcined CaCO(3) loadings, as well as the calcination temperature of CaCO(3) were optimised. The catalyst prepared by loading of 15 wt% calcined CaCO(3) at a fixed temperature of 800°C on fly ash exhibited a maximum oil conversion of 94.48%. Thermogravimetric analysis (TGA) revealed that the CaCO(3) was transformed into CaO at 770°C and interacted well with the ash support, whereas rich CaO, Al(2)O(3) and SiO(2) were identified in the composition using X-ray diffraction (XRD). The fine morphology size (<5 μm) and high surface area (1.719 m(2)/g) of the fly ash-based catalyst rendered it the highest catalytic activity.
    Matched MeSH terms: Methanol/chemistry*
  15. Karimi E, Jaafar HZ, Ahmad S
    Molecules, 2011 May 27;16(6):4438-50.
    PMID: 21623314 DOI: 10.3390/molecules16064438
    A local herb, Kacip Fatimah, is famous amongst Malay women for its uses in parturition; however, its phytochemical contents have not been fully documented. Therefore, a study was performed to evaluate the phenolics, flavonoids, and total saponin contents, and antibacterial and antifungal properties of the leaf, stem and root of three varieties of Labisia pumila Benth. Total saponins were found to be higher in the leaves of all three varieties, compared to the roots and stems. Leaves of var. pumila exhibited significantly higher total saponin content than var. alata and lanceolata, with values of 56.4, 43.6 and 42.3 mg diosgenin equivalent/g dry weight, respectively. HPLC analyses of phenolics and flavonoids in all three varieties revealed the presence of gallic acid, caffeic acid, rutin, and myricetin in all plant parts. Higher levels of flavonoids (rutin, quercitin, kaempferol) were observed in var. pumila compared with alata and lanceolata, whereas higher accumulation of phenolics (gallic acid, pyrogallol) was recorded in var. alata, followed by pumila and lanceolata. Antibacterial activities of leaf, stem and root extracts of all varieties determined against both Gram positive (Micrococcus luteus, Bacillus subtilis B145, Bacillus cereus B43, Staphylococcus aureus S1431) and Gram negative (Enterobacter aerogenes, Klebsiella pneumonia K36, Escherichia coli E256, Pseudomonas aeruginosa PI96) pathogens showed that crude methanolic extracts are active against these bacteria at low concentrations, albeit with lower antibacterial activity compared to kanamycin used as the control. Antifungal activity of methanolic extracts of all plant parts against Fusarium sp., Candida sp. and Mucor using the agar diffusion disc exhibited moderate to appreciable antifungal activities compared to streptomycin used as positive control.
    Matched MeSH terms: Methanol/chemistry
  16. Yam MF, Ang LF, Lim CP, Ameer OZ, Salman IM, Ahmad M, et al.
    J Acupunct Meridian Stud, 2010 Sep;3(3):197-202.
    PMID: 20869021 DOI: 10.1016/S2005-2901(10)60036-2
    Murdannia bracteata (C. B. Clarke) is a local plant that is widely used in Malaysia as a traditional remedy for various diseases of the kidney and liver, including inflammation and cancer. In the present study, we investigated the antioxidant and hepatoprotective activities of M. bracteata methanol extract (MB). 2,2'-diphenyl-1-picrylhydrazyl radical scavenging activity, lipid peroxidation inhibition and trolox equivalent antioxidant capacity of MB were determined. The hepatoprotective activity of MB was studied using a CCl(4)-induced liver toxicity model in rats. The hepatoprotective effect was assessed by monitoring the plasma malondialdehyde level and serum alanine transaminase and aspartate transaminase activities. Histopathological changes of hepatic tissue were also investigated. The results indicated that MB possessed potential antioxidant, lipid peroxidation inhibition and free radical scavenging activities. Pretreatment of rats with MB (500 mg/kg and 1000 mg/kg per os) before induction of CCl(4)-induced hepatotoxicity showed a dose-dependent reduction in the necrotic changes in hepatic tissue. The increases in plasma malondialdehyde level, serum alanine transaminase and aspartate transaminase activities were also significantly inhibited by MB. The total phenolic content of MB determined using Folin-Ciocalteu assay was found to be 10%. The results of the present study indicated that the hepatoprotective effect of MB is most likely due to its antioxidant and free radical scavenging properties.
    Matched MeSH terms: Methanol/chemistry
  17. Olutoye MA, Hameed BH
    Bioresour Technol, 2011 Feb;102(4):3819-26.
    PMID: 21183335 DOI: 10.1016/j.biortech.2010.11.100
    Fatty acid methyl ester was produced from used vegetable cooking oil using Mg(1-)(x) Zn(1+)(x)O(2) solid catalyst and the performance monitored in terms of ester content obtained. Used vegetable cooking oil was employed to reduce operation cost of biodiesel. The significant operating parameters which affect the overall yield of the process were studied. The highest ester content, 80%, was achieved with the catalyst during 4h 15 min reaction at 188°C with methanol to oil ratio of 9:1 and catalyst loading of 2.55 wt% oil. Also, transesterification of virgin oil gave higher yield with the heterogeneous catalyst and showed high selectivity towards ester production. The used vegetable cooking oil did not require any rigorous pretreatment. Catalyst stability was examined and there was no leaching of the active components, and its performance was as good at the fourth as at the first cycle.
    Matched MeSH terms: Methanol/chemistry
  18. Gan S, Ng HK, Ooi CW, Motala NO, Ismail MA
    Bioresour Technol, 2010 Oct;101(19):7338-43.
    PMID: 20435468 DOI: 10.1016/j.biortech.2010.04.028
    In this work, the esterification of free fatty acids (FFA) in waste cooking oil catalysed by ferric sulphate was studied as a pre-treatment step for biodiesel production. The effects of reaction time, methanol to oil ratio, catalyst concentration and temperature on the conversion of FFA were investigated on a laboratory scale. The results showed that the conversion of FFA reached equilibrium after an hour, and was positively dependent on the methanol to oil molar ratio and temperature. An optimum catalyst concentration of 2 wt.% gave maximum FFA conversion of 59.2%. For catalyst loadings of 2 wt.% and below, this catalysed esterification was proposed to follow a pseudo-homogeneous pathway akin to mineral acid-catalysed esterification, driven by the H(+) ions produced through the hydrolysis of metal complex [Fe(H(2)O)(6)](3+) (aq).
    Matched MeSH terms: Methanol/chemistry
  19. Chaibakhsh N, Rahman MB, Basri M, Salleh AB, Abd-Aziz S
    Biotechnol J, 2010 Aug;5(8):848-55.
    PMID: 20632329 DOI: 10.1002/biot.201000063
    Dimethyl adipate (DMA) was synthesized by immobilized Candida antarctica lipase B-catalyzed esterification of adipic acid and methanol. To optimize the reaction conditions of ester production, response surface methodology was applied, and the effects of four factors namely, time, temperature, enzyme concentration, and molar ratio of substrates on product synthesis were determined. A statistical model predicted that the maximum conversion yield would be 97.6%, at the optimal conditions of 58.5 degrees C, 54.0 mg enzyme, 358.0 min, and 12:1 molar ratio of methanol to adipic acid. The R(2) (0.9769) shows a high correlation between predicted and experimental values. The kinetics of the reaction was also investigated in this study. The reaction was found to obey the ping-pong bi-bi mechanism with methanol inhibition. The kinetic parameters were determined and used to simulate the experimental results. A good quality of fit was observed between the simulated and experimental initial rates.
    Matched MeSH terms: Methanol/chemistry
  20. Lim S, Hoong SS, Teong LK, Bhatia S
    Bioresour Technol, 2010 Sep;101(18):7180-3.
    PMID: 20395131 DOI: 10.1016/j.biortech.2010.03.134
    The novel biodiesel production technology using supercritical reactive extraction from Jatropha curcas L. oil seeds in this study has a promising role to fill as a more cost-effective processing technology. Compared to traditional biodiesel production method, supercritical reactive extraction can successfully carry out the extraction of oil and subsequent esterification/transesterification process to fatty acid methyl esters (FAME) simultaneously in a relatively short total operating time (45-80 min). Particle size of the seeds (0.5-2.0 mm) and reaction temperature/pressure (200-300 degrees C) are two primary factors being investigated. With 300 degrees C reaction temperature, 240 MPa operating pressure, 10.0 ml/g methanol to solid ratio and 2.5 ml/g of n-hexane to seed ratio, optimum oil extraction efficiency and FAME yield can reach up to 105.3% v/v and 103.5% w/w, respectively which exceeded theoretical yield calculated based on n-hexane Soxhlet extraction of Jatropha oil seeds.
    Matched MeSH terms: Methanol/chemistry*
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links