Affiliations 

  • 1 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
  • 2 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China. Electronic address: duqiwei@nbu.edu.cn
  • 3 State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Insititute of Plant Virology, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China. Electronic address: zengxiaoqun@nbu.edu.cn
  • 4 School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
Ultrason Sonochem, 2024 Jun 15;108:106958.
PMID: 38889569 DOI: 10.1016/j.ultsonch.2024.106958

Abstract

Fermented skim milk is an ideal food for consumers such as diabetic and obese patients, but its low-fat content affects its texture and viscosity. In this study, we developed an effective pretreatment method for fermented skim milk using low-frequency ultrasound (US), and investigated the molecular mechanism of the corresponding quality improvement. The skim milk samples were treated by optimal ultrasonication conditions (336 W power for 7 min at 3 °C), which improved the viscosity, water-holding capacity, sensory attributes, texture, and microstructure of fermented skim milk (P 

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.