Affiliations 

  • 1 Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Gelugor, Penang, Malaysia
  • 2 School of Health and Life Sciences, Teesside University, Middlesbrough, Tees Valley, UK
Pathog Glob Health, 2024 Jul 20.
PMID: 39030702 DOI: 10.1080/20477724.2024.2381402

Abstract

The development of rapid, accurate, and efficient detection methods for protozoan parasites can substantially control the outbreak of protozoan parasites infection, which poses a threat to global public health. Idealistically, electrochemical biosensors would be able to overcome the limitations of current detection methods due to their simplified detection procedure, on-site quantitative analysis, rapid detection time, high sensitivity, and portability. The objective of this scoping review is to evaluate the current state of electrochemical biosensors for detecting protozoan parasites. This review followed the most recent Preferred Reporting Items for Systematic Review and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) recommendations. Using electrochemical biosensor and protozoan parasite keywords, a literature search was conducted in PubMed, Scopus, Web of Science, and ScienceDirect on journals published between January 2014 and January 2022. Of the 52 studies, 19 were evaluated for eligibility, and 11 met the review's inclusion criteria to evaluate the effectiveness and limitations of the developed electrochemical biosensor platforms for detecting protozoan parasite including information about the samples, biomarkers, bioreceptors, detection system platform, nanomaterials used in fabrication, and limit of detection (LoD). Most electrochemical biosensors were fabricated using conventional electrodes rather than screen-printed electrodes (SPE). The range of the linear calibration curves for the developed electrochemical biosensors was between 200 ng/ml and 0.77 pM. The encouraging detection performance of the electrochemical biosensors demonstrate their potential as a superior alternative to existing detection techniques. On the other hand, more study is needed to determine the sensitivity and specificity of the electrochemical sensing platform for protozoan parasite detection.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.