Affiliations 

  • 1 Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
  • 2 School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne 3010, Australia
  • 3 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
  • 4 Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, Selangor 43400, Malaysia
  • 5 Food Technology and Innovation Research Center of Excellence Department of Agro-Industry, School of Agricultural Technology, Walailak University, Nakhon Si Thammarat 80161, Thailand
PMID: 39052986 DOI: 10.1021/acsami.4c05208

Abstract

The stimulus-responsive regulation of enzyme catalytic activity and selectivity provides a new opportunity to extend the functionality and efficiency of immobilized enzymes. This work aims to design and synthesize a thermo-switchable enzyme@MOF for size-selective biocatalysis and biosensing through the immobilization of Candida rugosa lipase (CRL) within ZIF-8 functionalized with thermally responsive polymer, poly(N-isopropylacrylamide) (PNIPAM) (CRL@ZIF-8-PNIPAM). Unlike free CRL, which does not demonstrate substrate selectivity, we can reversibly tune the pore size of the ZIF-8-PNIPAM nanostructures (open pores or blocked pores) through temperature stimulus and subsequently modulate the substrate selectivity of CRL@ZIF-8-PNIPAM. CRL@ZIF-8-PNIPAM had the highest hydrolytic activity for small molecules (12 mM p-nitrophenol/mg protein/min, 4-nitrophenyl butyrate (p-NP Be)) and the lowest hydrolytic activity for large molecules (0.16 mM p-nitrophenol/mg protein/min, 4-nitrophenyl palmitate (p-NP P)). In addition, CRL@ZIF-8-PNIPAM demonstrated thermo-switchable behavior for large molecules (p-NP P). The p-NP P hydrolytic activity of CRL@ZIF-8-PNIPAM was significantly lower at 40 °C (blocked pores) than at 27 °C (open pores). However, the transition of blocked pores and open pores is a gradual process that resulted in a delay in the "thermo-switchable" catalytic behavior of CRL@ZIF-8-PNIPAM during thermal cycling. CRL@ZIF-8-PNIPAM was also successfully used for the fabrication of electrochemical biosensors for the selective biosensing of pesticides with different molecular sizes.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.