Affiliations 

  • 1 Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia. Electronic address: arnazeri@unimas.my
  • 2 Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia. Electronic address: calvinjosejol@gmail.com
  • 3 Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia. Electronic address: allenealbanialinus@gmail.com
  • 4 Department of Civil Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
  • 5 Faculty of Engineering, Universitas Panca Bhakti, 78113, Pontianak, Kalimantan Barat, Indonesia
  • 6 Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak, Jalan Datuk Mohammad Musa, 94300, Kota Samarahan, Sarawak, Malaysia
Environ Res, 2025 Jan 29;270:121005.
PMID: 39889876 DOI: 10.1016/j.envres.2025.121005

Abstract

The treatment of brackish peat water presents a formidable challenge due to its elevated levels of natural organic matter and salinity which not only hinder conventional water treatment systems but also necessitate an innovative approach to effectively manage these complex water characteristics. In response to these challenges, electrocoagulation has emerged as a promising alternative by utilizing electrochemical processes to efficiently destabilize and eliminate contaminants in brackish peat water sources. As such, this review aims to unveil challenges of aluminium electrodes fouling and passivation in electrocoagulation treatment system for sustainable water management of coastal Borneo peatlands. Several studies in the literature highlight that key operating parameters, especially electric current and voltage which play a pivotal role in influencing the overall effectiveness of these electrocoagulation systems. Although aluminium electrodes demonstrate high contaminants removal efficiencies, it remains susceptible to fouling and passivation due to contaminant buildup and oxide layer formation which increase electrical resistance and decrease electroactivity of redox reactions. The novelty of this review lies in its focused synthesis of fouling and passivation dynamics through the integration of Tafel plot analyses and advanced characterization techniques, particularly Energy Dispersive X-Ray (EDX) spectroscopy. Furthermore, a thorough understanding of the adsorption mechanisms, particularly through the interaction between aluminium hydroxides and contaminants is essential for enhancing system efficiency and mitigating fouling. Additionally, optimizing the electrocoagulation treatment system and conducting a detailed analysis of adsorption mechanisms, particularly through Tafel plot analysis are pivotal for enhancing the system efficiency. Advanced analytical methods such as Energy Dispersive X-Ray (EDX) spectroscopy provide deeper insights into floc composition that essential for improving contaminants removal strategies. Overall, this review offers a focused assessment on the interplay between brackish peat water and electrocoagulation in order to provide a foundation for future research aimed at developing sustainable treatment systems for coastal Borneo peatlands.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.