Affiliations 

  • 1 Institute of Environmental and Water Resources Management, Faculty of Civil Engineering, Universiti Teknologi Malaysia, UTM Skudai, Johor Bahru, Malaysia
Biotechnol Appl Biochem, 2014 Mar-Apr;61(2):126-33.
PMID: 24033877 DOI: 10.1002/bab.1155

Abstract

Major concern about the presence of fluoranthene, which consists of four fused benzene rings, in the environment has been raised in the past few years due to its toxic, mutagenic, and persistent organic pollutant properties. In this study, we investigated the removal of fluoranthene under static and agitated conditions. About 89% fluoranthene was removed within 30 days under the agitated condition, whereas under the static condition, only 54% fluoranthene was removed. We further investigated the behavior and mechanism of fluoranthene biosorption and biotransformation by Pleurotus eryngii F032 to accelerate the elimination of fluoranthene. The optimum conditions for the elimination of fluoranthene by P. eryngii F032 included a temperature of 35 °C, pH 3, 0.2% inoculum concentration, and a C/N ratio of 16. Under these conditions at the initial fluoranthene concentration of 10 mg/L, more than 95% of fluoranthene was successfully removed within 30 days. Of those factors influencing the biodegradation of fluoranthene, salinity, glucose, and rhamnolipid content were of the greatest importance. Degradation metabolites identified using gas chromatography-mass spectrometry were 1-naphthalenecarboxylic acid and salicylic acid, suggesting possible metabolic pathways. Finally, it can be presumed that the major mechanism of fluoranthene elimination by white-rot fungi is to mineralize polycyclic aromatic hydrocarbons via biotransformation enzymes like laccase.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.