Affiliations 

  • 1 Center for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
J Pharm Sci, 2013 Mar;102(3):1063-75.
PMID: 23303620 DOI: 10.1002/jps.23446

Abstract

The aim of this study to administer hydrocortisone (HC) percutaneously in the form of polymeric nanoparticles (NPs) to alleviate its transcutaneous absorption, and to derive additional wound-healing benefits of chitosan. HC-loaded NPs had varied particle sizes, zeta potentials, and entrapment efficiencies, when drug-to-polymer mass ratios increased from 1:1 to 1:8. Ex vivo permeation analysis showed that the nanoparticulate formulation of HC significantly reduced corresponding flux [∼24 µg/(cm(2) h)] and permeation coefficient (∼4.8 × 10(-3) cm/h) of HC across the full thickness NC/Nga mouse skin. The nanoparticulate formulation also exhibited a higher epidermal (1610 ± 42 µg/g of skin) and dermal (910 ± 46 µg/g of skin) accumulation of HC than those associated with control groups. An in vivo assessment using an NC/Nga mouse model further revealed that mice treated with the nanoparticulate system efficiently controlled transepidermal water loss [15 ± 2 g/(m(2) h)], erythema intensity (232 ± 12), dermatitis index (mild), and thickness of skin (456 ± 27 µm). Taken together, histopathological examination predicted that the nanoparticulate system showed a proficient anti-inflammatory and antifibrotic activity against atopic dermatitic (AD) lesions. Our results strongly suggest that HC-loaded NPs have promising potential for topical/transdermal delivery of glucocorticoids in the treatment of AD.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications