Affiliations 

  • 1 Brain Research Institute, School of Medicine and Health Sciences, Monash University Sunway Campus, Malaysia
Gen Comp Endocrinol, 2013 Jan 15;181:310-5.
PMID: 23044054 DOI: 10.1016/j.ygcen.2012.09.021

Abstract

The early-life stress has critical impact on brain development which can lead to long-term effects on brain functions during adulthood. It has been reported that caffeine possesses a protective effect in neurodegenerative diseases. Thus, this study investigates the potential of caffeine to protect brain functions from adverse effects due to stress exposure during early-life development in the male zebrafish. In the first part of this study, synthetic glucocorticoid, dexamethasone (DEX) (2-200 mg/L for 24 h) was used to induce stress effects in the zebrafish larvae from 4 to 5 days post-fertilisation (dpf) and the effect of DEX administration on zebrafish larvae on anxiety-like behaviour during adulthood in novel tank test was investigated. Next, the possible protective effect of caffeine pre-treatment (5-50 mg/L for 24 h from 3 to 4dpf) before DEX administration was studied. DEX-treated adult male zebrafish showed higher anxiety levels in behavioural tests, as seen in longer latency to enter the top part of the tank, lower transition numbers between the top and bottom parts with more time spent at the bottom and lesser time spent at the top and lower distance travelled at top part. The effect of DEX on anxiety-like behaviour was dose-dependent. Importantly, adult male zebrafish pre-treated with caffeine before DEX treatment did not show any anxiety-like behaviour. These results show that exposure to stress during early-life leads to anxiety-like behaviour in the adult male zebrafish but pre-treatment with caffeine protects from stress-induced anxiety.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.