Displaying publications 1 - 20 of 163 in total

Abstract:
Sort:
  1. LAIRD M
    Med J Malaya, 1956 Sep;11(1):40-61; discussion, 61-2.
    PMID: 13399542
    Matched MeSH terms: Zebrafish*
  2. DANARAJ TJ, SCHACHER JF, COLLESS DH
    Med J Malaya, 1958 Jun;12(4):605-12.
    PMID: 13577153
    Matched MeSH terms: Zebrafish*
  3. Tan JK, Nazar FH, Makpol S, Teoh SL
    Molecules, 2022 Oct 30;27(21).
    PMID: 36364200 DOI: 10.3390/molecules27217374
    Learning and memory are essential to organism survival and are conserved across various species, especially vertebrates. Cognitive studies involving learning and memory require using appropriate model organisms to translate relevant findings to humans. Zebrafish are becoming increasingly popular as one of the animal models for neurodegenerative diseases due to their low maintenance cost, prolific nature and amenability to genetic manipulation. More importantly, zebrafish exhibit a repertoire of neurobehaviors comparable to humans. In this review, we discuss the forms of learning and memory abilities in zebrafish and the tests used to evaluate the neurobehaviors in this species. In addition, the pharmacological studies that used zebrafish as models to screen for the effects of neuroprotective and neurotoxic compounds on cognitive performance will be summarized here. Lastly, we discuss the challenges and perspectives in establishing zebrafish as a robust model for cognitive research involving learning and memory. Zebrafish are becoming an indispensable model in learning and memory research for screening neuroprotective agents against cognitive impairment.
    Matched MeSH terms: Zebrafish*
  4. Ben Chabchoubi I, Lam SS, Pane SE, Ksibi M, Guerriero G, Hentati O
    Environ Pollut, 2023 May 01;324:120698.
    PMID: 36435277 DOI: 10.1016/j.envpol.2022.120698
    The uncontrolled or continuous release of effluents from wastewater treatment plants leads to the omnipresence of pharmaceutical active compounds (PhACs) in the aquatic media. Today, this is a confirmed problem becoming a main subject of twin public and scientific concerns. However, still little information is available about the long-term impacts of these PhACs on aquatic organisms. In this review, efforts were made to reveal correlation between the occurrence in the environment, ecotoxicological and health risks of different PhACs via toxicological evaluation by zebrafish (Danio rerio). This animal model served as a bioindicator for any health impacts after the exposure to these contaminants and to better understand the responses in relation to human diseases. This review paper focused on the calculation of Risk Quotients (RQs) of 34 PhACs based on environmental and ecotoxicological data available in the literature and prediction from the ECOSAR V2.2 software. To the best of the authors' knowledge, this is the first report on the risk assessment of PhACs by the two different methods as mentioned above. RQs showed greater difference in potential environmental risks of the PhACs. These differences in risk values underline the importance of environmental and experimental factors in exposure conditions and the interpretation of RQ values. While the results showed high risk to Danio rerio of the majority of PhACs, risk qualification of the others varied between moderate to insignifiant. Further research is needed to assess pharmaceutical hazards when present in wastewater before discharge and monitor the effectiveness of treatment processes. The recent new advances in the morphological assessment of toxicant-exposed zebrafish larvae for the determination of test compounds effects on the developmental endpoints were also discussed. This review emphasizes the need for strict regulations on the release of PhACs into environmental media in order to minimize their toxicity to aquatic organisms.
    Matched MeSH terms: Zebrafish*
  5. Teoh SL, Sapri SRB, Yusof MRBM, Yahaya MF, Das S
    J Am Assoc Lab Anim Sci, 2020 09 01;59(5):512-518.
    PMID: 32600503 DOI: 10.30802/AALAS-JAALAS-19-000167
    Recently, the zebrafish has gained in popularity as a vertebrate animal model for biomedical research. Commercial zebrafish housing systems are available and are designed to maximize stocking density of fish for a given space, but these systems are expensive and purchasing them may not be feasible for emerging laboratories with limited funding. In this article, we describe the construction of a simple and affordable recirculating zebrafish housing system. This system can be constructed in 3 working days, with materials readily available in hardware stores. The cost for construction of the system was only 3,000 MYR (750 USD). The system consists of a water reservoir, a supply line that delivers water to the shelves holding the zebrafish tanks, and a drainage line that receives water from both the supply line and the shelves containing the fish tanks and returns this water to the reservoir. This system also has a 3-stage filtration process to ensure that clean water is delivered to the zebrafish tank. The system can house up to 360 zebrafish. This low-cost housing system may make research using zebrafish feasible some laboratories.
    Matched MeSH terms: Zebrafish/physiology*
  6. Jin M, Dang J, Paudel YN, Wang X, Wang B, Wang L, et al.
    Sci Total Environ, 2021 Jul 01;776:145963.
    PMID: 33639463 DOI: 10.1016/j.scitotenv.2021.145963
    Fluorene-9-bisphenol (BHPF) is a bisphenol A substitute, which has been introduced for the production of so-called 'bisphenol A (BPA)-free' plastics. However, it has been reported that BHPF can enter living organisms through using commercial plastic bottles and cause adverse effects. To date, the majority of the toxicologic study of BHPF focused on investigating its doses above the toxicological threshold. Here, we studied the effects of BHPF on development, locomotion, neuron differentiation of the central nervous system (CNS), and the expression of genes in the hypothalamic-pituitary-thyroid (HPT) axis in zebrafish exposed to different doses of BHPF ranging from 1/5 of LD1 to LD50 (300, 500, 750, 1500, 3000, and 4500 nM). As a result, the possible hormetic effects of BHPF on regulating the HPT axis were revealed, in which low-dose BHPF positively affected the HPT axis while this regulation was inhibited as the dose increased. Underlying mechanism investigation suggested that BHPF disrupted myelination through affecting HPT axis including related genes expression and TH levels, thus causing neurotoxic characteristics. Collectively, this study provides the full understanding of the environmental impact of BHPF and its toxicity on living organisms, highlighting a substantial and generalized ongoing dose-response relationship with great implications for the usage and risk assessment of BHPF.
    Matched MeSH terms: Zebrafish*
  7. KIRK R
    J Trop Med Hyg, 1959 Jan;62(1):10-7.
    PMID: 13621483
    Matched MeSH terms: Zebrafish*
  8. Amran AI, Lim SJ, Muhd Noor ND, Salleh AB, Oslan SN
    Microb Pathog, 2023 Mar;176:106025.
    PMID: 36754101 DOI: 10.1016/j.micpath.2023.106025
    Meyerozyma guilliermondii is a rare opportunistic fungal pathogen that causes deadly invasive candidiasis in human. M. guilliermondii strain SO is a local yeast isolate that possesses huge industrial interests but also pathogenic towards zebrafish embryos. Enolases that bind to human extracellular matrix (ECM) proteins are among the fungal virulence factors. To understand its pathogenicity mechanism down to molecular level, especially in the rare M. guilliermondii, this study aimed to identify and characterize the potentially virulence-associated enolase in M. guilliermondii strain SO using bioinformatics approaches. Profile Hidden-Markov model was implemented to identify enolase-related sequences in the fungal proteome. Sequence analysis deciphered only one (MgEno4581) out of nine sequences exhibited potent virulence traits observed similarly in the pathogenic Candida albicans. MgEno4581 structure that was predicted via SWISS-MODEL using C. albicans enolase (CaEno1; PDB ID: 7vrd) as the homology modeling template portrayed a highly identical motif with CaEno1 that facilitates ECM proteins binding. Amino acid substitutions (D234K, K235A, Y238H, K239D, G243K, V248C and Y254F) in ECM-binding motif of Saccharomyces cerevisiae enolase (ScEno) compared to MgEno4581 and CaEno1 caused changes in motif's surface charges. Protein-protein docking indicated F253 in ScEno only interacted hydrophobically with human plasminogen (HPG). Hydrogen linkages were observed for both MgEno4581 and CaEno1, suggesting a stronger interaction with HPG in the hydrophilic host microenvironments. Thus, our in silico characterizations on MgEno4581 provided new perspectives on its potential roles in candidiasis (fungal-host interactions) caused by M. guilliermondii, especially M. guilliermondii strain SO on zebrafish embryos that mimic the immunocompromised individuals as previously evident.
    Matched MeSH terms: Zebrafish*
  9. Shahjahan M, Kitahashi T, Ogawa S, Parhar IS
    Gen Comp Endocrinol, 2013 Nov 1;193:79-85.
    PMID: 23899715 DOI: 10.1016/j.ygcen.2013.07.015
    Kisspeptins encoded by the kiss1 and kiss2 genes play an important role in reproduction through the stimulation of gonadotropin-releasing hormone (GnRH) secretion by activating their receptors (KissR1 EU047918 and KissR2 EU047917). To understand the mechanism through which temperature affects reproduction, we examined kiss1 and kiss2 and their respective receptor (kissr1 and kissr2) gene expression in the brain of male zebrafish exposed to a low temperature (15°C), normal temperature (27°C), and high temperature (35°C) for 7-days. kiss1 mRNA levels in the brain were significantly increased (2.9-fold) in the low temperature compared to the control (27°C), while no noticeable change was observed in the high temperature conditions. Similarly, kissr1 mRNA levels were significantly increased (1.5-2.2-folds) in the low temperature conditions in the habenula, the nucleus of the medial longitudinal fascicle, oculomotor nucleus, and the interpeduncular nucleus. kiss2 mRNA levels were significantly decreased (0.5-fold) in the low and high temperature conditions, concomitant with kissr2 mRNA levels (0.5-fold) in the caudal zone of the periventricular hypothalamus and the posterior tuberal nucleus. gnrh3 but not gnrh2 mRNA levels were also decreased (0.5-fold) in the low and high temperature conditions. These findings suggest that while the kiss1/kissr1 system is sensitive to low temperature, the kiss2/kissr2 system is sensitive to both extremes of temperature, which leads to failure in reproduction.
    Matched MeSH terms: Zebrafish/genetics; Zebrafish/metabolism*; Zebrafish/physiology; Zebrafish Proteins/metabolism*
  10. Moriya S, Tahsin N, Parhar IS
    Sci Rep, 2017 08 11;7(1):7926.
    PMID: 28801581 DOI: 10.1038/s41598-017-08248-8
    The bactericidal/permeability-increasing (BPI) fold-containing (BPIF) superfamily of genes expressed in the brain are purportedly involved in modulating brain function in response to stress, such as inflammation. Kisspeptin, encoded by kiss, is affected by inflammation in the brain; therefore, BPIF family genes might be involved in the modulation of kisspeptin in the brain. In this study, we investigated the expression of BPIF family C, like (bpifcl) in zebrafish brain and its involvement in kiss2 regulation. The identified, full-length sequence of a bpifcl isoform expressed in the zebrafish brain contained the BPI fold shared by BPIF family members. bpifcl mRNA expression in female zebrafish brains was significantly higher than that in males. Exposure of female zebrafish to 11-ketotestosterone decreased bpifcl and kiss2 mRNA expression. bpifcl knockdown by bpifcl-specific small interfering RNA administration to female zebrafish brain decreased kiss2 mRNA expression. bpifcl expression was widely distributed in the brain, including in the dorsal zone of the periventricular hypothalamus (Hd). Furthermore, bpifcl was also expressed in KISS2 neurons in the Hd. These results suggest that the Bpifcl modulates kiss2 mRNA expression under the influence of testosterone in the Hd of female zebrafish.
    Matched MeSH terms: Zebrafish/genetics*; Zebrafish/physiology*; Zebrafish Proteins/metabolism*
  11. Tan SH, Chung HH, Shu-Chien AC
    Biochem Biophys Res Commun, 2010 Mar 12;393(3):397-403.
    PMID: 20138842 DOI: 10.1016/j.bbrc.2010.01.130
    Despite the known importance of long-chained polyunsaturated fatty acids (LC-PUFA) during development, very little is known about their utilization and biosynthesis during embryogenesis. Combining the advantages of the existence of a complete range of enzymes required for LC-PUFA biosynthesis and the well established developmental biology tools in zebrafish, we examined the expression patterns of three LC-PUFA biosynthesis genes, Elovl2-like elongase (elovl2), Elovl5-like elongase (elovl5) and fatty acyl desaturase (fad) in different zebrafish developmental stages. The presence of all three genes in the brain as early as 24 hours post fertilization (hpf) implies LC-PUFA synthesis activity in the embryonic brain. This expression eventually subsides from 72 hpf onwards, coinciding with the initiation of elovl2 and fad expression in the liver and intestine, 2 organs known to be involved in adult fish LC-PUFA biosynthesis. Collectively, these patterns strongly suggest the necessity for localized production of LC-PUFA in the brain during in early stage embryos prior to the maturation of the liver and intestine. Interestingly, we also showed a specific expression of elovl5 in the proximal convoluted tubule (PCT) of the zebrafish pronephros, suggesting a possible new role for LC-PUFA in kidney development and function.
    Matched MeSH terms: Zebrafish/embryology*; Zebrafish/genetics; Zebrafish Proteins/genetics*; Zebrafish Proteins/metabolism
  12. Lewis RS, Noor SM, Fraser FW, Sertori R, Liongue C, Ward AC
    J Immunol, 2014 Jun 15;192(12):5739-48.
    PMID: 24835394 DOI: 10.4049/jimmunol.1301376
    Cytokine-inducible SH2 domain-containing protein (CISH), a member of the suppressor of cytokine signaling family of negative feedback regulators, is induced by cytokines that activate STAT5 and can inhibit STAT5 signaling in vitro. However, demonstration of a definitive in vivo role for CISH during development has remained elusive. This study employed expression analysis and morpholino-mediated knockdown in zebrafish in concert with bioinformatics and biochemical approaches to investigate CISH function. Two zebrafish CISH paralogs were identified, cish.a and cish.b, with high overall conservation (43-46% identity) with their mammalian counterparts. The cish.a gene was maternally derived, with transcripts present throughout embryogenesis, and increasing at 4-5 d after fertilization, whereas cish.b expression commenced at 8 h after fertilization. Expression of cish.a was regulated by the JAK2/STAT5 pathway via conserved tetrameric STAT5 binding sites (TTCN3GAA) in its promoter. Injection of morpholinos targeting cish.a, but not cish.b or control morpholinos, resulted in enhanced embryonic erythropoiesis, myelopoiesis, and lymphopoiesis, including a 2- 3-fold increase in erythrocytic markers. This occurred concomitantly with increased activation of STAT5. This study indicates that CISH functions as a conserved in vivo target and regulator of STAT5 in the control of embryonic hematopoiesis.
    Matched MeSH terms: Zebrafish/genetics; Zebrafish/immunology*; Zebrafish Proteins/genetics; Zebrafish Proteins/immunology*
  13. Hashiguchi Y, Zakaria MR, Toshinari M, Mohd Yusoff MZ, Shirai Y, Hassan MA
    Environ Pollut, 2021 May 15;277:116780.
    PMID: 33640825 DOI: 10.1016/j.envpol.2021.116780
    Most palm oil mills adopted conventional ponding system, including anaerobic, aerobic, facultative and algae ponds, for the treatment of palm oil mill effluent (POME). Only a few mills installed a bio-polishing plant to treat POME further before its final discharge. The present study aims to determine the quality and toxicity levels of POME final discharge from three different mills by using conventional chemical analyses and fish (Danio rerio) embryo toxicity (FET) test. The effluent derived from mill A which installed with a bio-polishing plant had lower values of BOD, COD and TSS at 45 mg/L, 104 mg/L, and 27 mg/L, respectively. Only mill A nearly met the industrial effluent discharge standard for BOD. In FET test, effluent from mill A recorded low lethality and most of the embryos were malformed after hatching (half-maximal effective concentration (EC50) = 20%). The highest toxicity was observed from the effluent of mill B and all embryos were coagulated after 24 h in samples greater than 75% of effluent (38% of half-maximal lethal concentration (LC50) at 96 h). The embryos in the effluent from mill C recorded high mortality after hatching, and the survivors were malformed after 96 h exposure (LC50 = 26%). Elemental analysis of POME final discharge samples showed Cu, Zn, and Fe concentrations were in the range of 0.10-0.32 mg/L, 0.01-0.99 mg/L, and 0.94-4.54 mg/L, respectively and all values were below the effluent permissible discharge limits. However, the present study found these metals inhibited D. rerio embryonic development at 0.12 mg/L of Cu, and 4.9 mg/L of Fe for 96 h-EC50. The present study found that bio-polishing plant installed in mill A effectively removing pollutants especially BOD and the FET test was a useful method to monitor quality and toxicity of the POME final discharge samples.
    Matched MeSH terms: Zebrafish*
  14. COLLINS CP
    Med J Malaya, 1957 Dec;12(2):448-55.
    PMID: 13515877
    Matched MeSH terms: Zebrafish*
  15. MILLIS J
    Med J Malaya, 1955 Dec;10(2):157-61.
    PMID: 13308616
    Matched MeSH terms: Zebrafish*
  16. Khor ES, Noor SM, Wong PF
    In Vivo, 2019 10 31;33(6):1713-1720.
    PMID: 31662495 DOI: 10.21873/invivo.11661
    The mammalian target of rapamycin (mTOR), a 289 kDa serine/threonine protein kinase of the phosphoinositide 3-kinase (PI3K)-related family is known for its role in regulating lifespan and the aging process in humans and rodents. Aging in zebrafish very much resembles aging in humans. Aged zebrafish often manifest with spinal curvature, cataracts and cognitive frailty, akin to human age-related phenotypical effects such as osteoarthritis, dwindling vision and cognitive dysfunction. However, the role of the zebrafish orthologue of mTOR, ztor, is less defined in these areas. This review paper discusses the tale of growing old in the zebrafish, the physiological roles of ztor in normal developmental processes and its involvement in the pathogenesis of aging-related diseases such as metabolic disorders and cancers.
    Matched MeSH terms: Zebrafish/metabolism*
  17. Muthuraman A, Ramesh M, Mustaffa F, Nadeem A, Nishat S, Paramakrishnan N, et al.
    Molecules, 2023 May 26;28(11).
    PMID: 37298835 DOI: 10.3390/molecules28114358
    Molecular docking is widely used in the assessment of the therapeutic potential of pharmaceutical agents. The binding properties of beta-carotene (BC) to acetylcholine esterase (AChE) proteins were characterized using the molecular docking method. The mechanism of AChE inhibition was assessed by an experimental in vitro kinetic study. In addition, the role of BC action was tested by the zebrafish embryo toxicity test (ZFET). The results of the docking ability of BC to AChE showed significant ligand binding mode. The kinetic parameter, i.e., the low AICc value shown as the compound was the competitive type of inhibition of AChE. Further, BC also showed mild toxicity at a higher dose (2200 mg/L) in ZFET assessment with changes in biomarkers. The LC50 value of BC is 1811.94 mg/L. Acetylcholine esterase (AChE) plays a pivotal role in the hydrolysis of acetylcholine, which leads to the development of cognitive dysfunction. BC possesses the regulation of acetylcholine esterase (AChE) and acid phosphatase (AP) activity to prevent neurovascular dysfunction. Therefore, the characterization of BC could be used as a pharmaceutical agent for the treatment of cholinergic neurotoxicity-associated neurovascular disorders such as developmental toxicity, vascular dementia, and Alzheimer's disease due to its AChE and AP inhibitory actions.
    Matched MeSH terms: Zebrafish/metabolism
  18. Wang PS, Ahmad A, Nazar M, Rahmah AU, Moniruzzaman M
    Molecules, 2023 Aug 01;28(15).
    PMID: 37570764 DOI: 10.3390/molecules28155794
    Oil spill remediation plays a vital role in mitigating the environmental impacts caused by oil spills. The chemical method is one of the widely recognized approaches in chemical surfactants. However, the most commonly used chemical surfactants are toxic and non-biodegradable. Herein, two biocompatible and biodegradable surfactants were synthesized from orange peel using the ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) and organic solvent dimethylacetamide (CH3CN(CH3)2) as reaction media. The acronyms SOPIL and SOPOS refer to the surfactants prepared with BMIMCl and dimethylacetamide, respectively. The surface tension, dispersant effectiveness, optical microscopy, and emulsion stability test were conducted to examine the comparative performance of the synthesized surfactants. The Baffled flask test (BFT) was carried out to determine the dispersion effectiveness. The toxicity test was performed against zebrafish (Danio rerio), whereas the closed bottle test (CBT) evaluated biodegradability. The results revealed that the critical micelle concentration (CMC) value of SOPIL was lower (8.57 mg/L) than that of SOPOS (9.42 mg/L). The dispersion effectiveness values for SOPIL and SOPOS were 69.78% and 40.30%, respectively. The acute toxicity test demonstrated that SOPIL was 'practically non-toxic' with a median lethal concentration of more than 1000 mg/L after 96 h. The biodegradation rate was recorded as higher than 60% for both surfactants within 28 days, demonstrating their readily biodegradable nature. Considering these attributes, biocompatible and biodegradable surfactants derived from orange peel emerge as a promising and sustainable alternative for oil spill remediation.
    Matched MeSH terms: Zebrafish/metabolism
  19. Khan MI, Mubashir M, Zaini D, Mahnashi MH, Alyami BA, Alqarni AO, et al.
    J Hazard Mater, 2021 08 05;415:125364.
    PMID: 33740721 DOI: 10.1016/j.jhazmat.2021.125364
    In the present research work, a comprehensive tool for cumulative ecotoxicological impact assessment of ionic liquids (ILs) to aquatic life has been constructed. Using the probabilistic tool, impact of individual ILs to a group of aquatic species is assessed by chemical toxicity distributions (CTDs). The impact of group of ILs to individual aquatic species is assessed by species sensitivity distributions (SSDs). Acute toxicity data of imidazolium ILs with chloride (Cl-), bromide (Br-), tetrafluoroborate (BF4-), and hexafluorophosphate (PF6-) anions are used in CTD and SSD. Allowable concentrations for a group of Imidazolium ILs with the same mode of action (SMOA) to five aquatic species; Daphnia magna, Vibrio fischeri, Algae, Zebrafish, and Escherichia coli are estimated by CTDs. It has been concluded that 1-Butyl-3-methylimidazolium chloride (BMIMCl) possess the lowest risk at an acceptable risk value of 750 × 10-5 mmol/L which is 12% less than that of OMIMCl. Furthermore, the sensitivities towards the aquatic species reveal that from the studied ILs, BMIMBF4 with an acceptable risk value of 3200 × 10-5 mmol/L is the most suitable IL towards the selected aquatic species. Hence, current work provides cumulative allowable concentrations and acceptable risk values for ILs which release to aquatic compartment of ecosystem.
    Matched MeSH terms: Zebrafish
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links