Affiliations 

  • 1 Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
  • 2 Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraidah, Kingdom of Saudi Arabia
IUBMB Life, 2017 09;69(9):689-699.
PMID: 28685937 DOI: 10.1002/iub.1655

Abstract

In neurodegenerative diseases, such as Alzheimer's and Parkinson's, microglial cell activation is thought to contribute to their degeneration by producing neurotoxic compounds. While dental pulp stem cells (DPSCs) have been regarded as the next possible cell source for cell replacement therapy (CRT), their actual role when exposed in such harsh environment remains elusive. In this study, the immunomodulatory behavior of DPSCs from human subjects was investigated in a coculture system consisting of neuron and microglia which were treated with 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine, which mimics the inflammatory conditions and contribute to degeneration of dopaminergic (DA-ergic) neurons. Assessments were performed on their proliferation, extent of DNA damage, productions of reactive oxygen species (ROS) and nitric oxide (NO), as well as secretion of inflammatory mediators. Notably, DPSCs were shown to attenuate their proliferation, production of ROS, and NO significantly (P 

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.