Affiliations 

  • 1 Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
  • 2 Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, Surrey, United Kingdom
  • 3 Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, Surrey, United Kingdom; PU-RCSI School of Medicine, Perdana University, 43400, Serdang, Selangor Darul Ehsan, Malaysia
  • 4 Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom. Electronic address: clh11@cam.ac.uk
Mech Ageing Dev, 2018 Jul;173:92-103.
PMID: 29763629 DOI: 10.1016/j.mad.2018.05.004

Abstract

INTRODUCTION: Ageing and age-related bioenergetic conditions including obesity, diabetes mellitus and heart failure constitute clinical ventricular arrhythmic risk factors.

MATERIALS AND METHODS: Pro-arrhythmic properties in electrocardiographic and intracellular recordings were compared in young and aged, peroxisome proliferator-activated receptor-γ coactivator-1β knockout (Pgc-1β-/-) and wild type (WT), Langendorff-perfused murine hearts, during regular and programmed stimulation (PES), comparing results by two-way ANOVA.

RESULTS AND DISCUSSION: Young and aged Pgc-1β-/- showed higher frequencies and durations of arrhythmic episodes through wider PES coupling-interval ranges than WT. Both young and old, regularly-paced, Pgc-1β-/- hearts showed slowed maximum action potential (AP) upstrokes, (dV/dt)max (∼157 vs. 120-130 V s-1), prolonged AP latencies (by ∼20%) and shortened refractory periods (∼58 vs. 51 ms) but similar AP durations (∼50 ms at 90% recovery) compared to WT. However, Pgc-1β-/- genotype and age each influenced extrasystolic AP latencies during PES. Young and aged WT ventricles displayed distinct, but Pgc-1β-/- ventricles displayed similar dependences of AP latency upon (dV/dt)max resembling aged WT. They also independently increased myocardial fibrosis. AP wavelengths combining activation and recovery terms paralleled contrasting arrhythmic incidences in Pgc-1β-/- and WT hearts. Mitochondrial dysfunction thus causes pro-arrhythmic Pgc-1β-/- phenotypes by altering AP conduction through reducing (dV/dt)max and causing age-dependent fibrotic change.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.