BACKGROUND: The development of severe drug resistance caused by the extensive use of anti-HIV agents has resulted in a greatly extensive reduction in these drugs efficacy.
OBJECTIVES: To identify the important pharmacophoric features and correlate 3D chemical structure of benzothiazinimines with their anti-HIV potential using 2D, 3D-QSAR and pharmacophore modeling studies.
METHODS: QSAR and pharmacophore mapping studies have been used to relate structural features. 2D QSAR and 3D QSAR studies were performed using partial least square and k-nearest neighbor methodology, coupled with various feature selection methods, viz. stepwise, genetic algorithm, and simulated annealing, to derive QSAR models which were further validated for statistical significance.
RESULTS: The physicochemical descriptor XAHydrophilicArea and SsOHE-index, and alignmentindependent descriptor T_C_Cl_6 showed significant correlation with the anti-HIV activity of benzothiazinimines in 2D QSAR. 3D QSAR results showed the significant effect of electrostatic and steric field descriptors in the anti-HIV potential of benzothiazinimines. The generated pharmacophore hypothesis demonstrated the importance of aromaticity and hydrogen bond acceptors.
CONCLUSION: The significant models obtained in this study suggested that these techniques could be used as a guidance for designing new benzothiazinimines with enhanced anti-HIV potential.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.