Wearable technology has been viewed as one of the plausible alternatives to capture human motion in an unconstrained environment, especially during running. However, existing methods require kinematic and kinetic measurements of human body segments and can be complicated. This paper investigates the use of neural network model (NN) and accelerometer to estimate vertical ground reaction force (VGRF). An experimental study was conducted to collect sufficient samples for training, validation and testing. The estimated results were compared with VGRF measured using an instrumented treadmill. The estimates yielded an average root mean square error of less than 0.017 of the body weight (BW) and a cross-correlation coefficient greater than 0.99. The results also demonstrated that NN could estimate impact force and active force with average errors ranging between 0.10 and 0.18 of BW at different running speeds. Using NN and uniaxial accelerometer can (1) simplify the estimation of VGRF, (2) reduce the computational requirement and (3) reduce the necessity of multiple wearable sensors to obtain relevant parameters.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.