Affiliations 

  • 1 Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, 56000, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
  • 2 Faculty of Pharmaceutical Sciences, UCSI University, Jalan Menara Gading, Taman Connaught, 56000, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia. Electronic address: anand.pharma@gmail.com
Comput Biol Chem, 2018 Dec;77:52-63.
PMID: 30240986 DOI: 10.1016/j.compbiolchem.2018.09.001

Abstract

The major complaint that most of the schizophrenic patients' face is the cognitive impairment which affects the patient's quality of life. The current antipsychotic drugs treat only the positive symptoms without alleviating the negative or cognitive symptoms of the disease. In addition, the existing therapies are known to produce extrapyramidal side effects that affect the patient adherence to the treatment. PDE10A inhibitor is the new therapeutic approach which has been proven to be effective in alleviating the negative and cognitive symptoms of the disease. A number of PDE10A inhibitors have been developed, but no inhibitor has made it beyond the clinical trials so far. Thus, the present study has been conducted to identify a PDE10A inhibitor from natural sources to be used as a lead compound for the designing of novel selective PDE10A inhibitors. Ligand and structure-based pharmacophore models for PDE10A inhibitors were generated and employed for virtual screening of universal natural products database. From the virtual screening results, 37 compounds were docked into the active site of the PDE10A. Out of 37 compounds, three inhibitors showed the highest affinity for PDE10A where UNPD216549 showed the lowest binding energy and has been chosen as starting point for designing of novel PDE10A inhibitors. The structure-activity-relationship studies assisted in designing of selective PDE10A inhibitors. The optimization of the substituents on the phenyl ring resulted in 26 derivatives with lower binding energy with PDE10A as compared to the lead compound. Among these, MA 8 and MA 98 exhibited the highest affinity for PDE10A with binding energy (-10.90 Kcal/mol).

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.