Affiliations 

  • 1 Universiti Teknologi PETRONAS
  • 2 Universiti Teknologi Malaysia
MATEMATIKA, 2018;34(2):293-311.
MyJurnal

Abstract

This study presents a mathematical model examining wastewater pollutant removal through
an oxidation pond treatment system. This model was developed to describe the reaction
between microbe-based product mPHO (comprising Phototrophic bacteria (PSB)), dissolved
oxygen (DO) and pollutant namely chemical oxygen demand (COD). It consists
of coupled advection-diffusion-reaction equations for the microorganism (PSB), DO and
pollutant (COD) concentrations, respectively. The coupling of these equations occurred
due to the reactions between PSB, DO and COD to produce harmless compounds. Since
the model is nonlinear partial differential equations (PDEs), coupled, and dynamic, computational
algorithm with a specific numerical method, which is implicit Crank-Nicolson
method, was employed to simulate the dynamical behaviour of the system. Furthermore,
numerical results revealed that the proposed model demonstrated high accuracy when
compared to the experimental data.