In this research, a novel method was performed to obtain hydrogel with superior thermal stability by incorporation
of cellulose nanocrystals (CNC) into gelatin based hydrogel. Glutaraldehyde was used as cross-linker due to its high
chemical reactivity towards NH2
group on gelatin. Different ratio of gelatin/CNC hydrogel was produced in order to study
the effects of CNC towards the swelling behaviour and thermal stability of gelatin based hydrogel. The obtained hydrogel
was subjected to Fourier transform infrared (FTIR) to verify that gelatin had been cross-linked, swelling test with different
pH for swelling behaviour and thermogravimetric analysis (TGA) for thermal stability. The presence of C=N stretching
group in the FTIR spectrum for gelatin/CNC hydrogel indicated that the cross-linking reaction between gelatin monomer
had been successfully carried out. The hydrogel showed impressive pH sensitivity and maximum swelling was obtained
at pH3. The TGA results clearly showed that the incorporation of CNC into gelatin was able to produce hydrogel with
higher thermal stability compare to neat gelatin.