Sains Malaysiana, 2018;47:923-929.

Abstract

The presence of two different chromophores in benzothiazole molecule namely benzothiazole and aromatic rings lead to
interesting chemical and biological properties that attract more researches on the compounds. Three new benzothiazolylbenzoythiourea
compounds namely 1-(1,3-benzothiazol-2-yl)-3-(benzoylthiourea) (BBT), 1-(1,3-benzothiazol-2-yl)-3-
(4-chlorobenzoylthiourea) (BBT-4Cl) and 1-(1,3-benzothiazol-2-yl)-3-(4-methoxybenzoylthiourea) (BBT-4OCH3
) with
different electron withdrawing substituents (R) at the para positions on the benzene ring of benzoylthiourea ring have
been synthesized from the reaction of R-benzoyl isothiocyanate (R= H, Cl, and OCH3
) and 2-aminobenzothiazole. The
compounds were characterized by spectroscopic techniques (infrared, 1
H proton NMR and UV-Vis). The IR spectra showed
the frequency signals of n (C=O), n (C=S), n (N-H) at 1664-1673, 1238-1249 and 3031-3055 cm-1, respectively. The 1
H
proton NMR spectra showed the presence of N-H amine and amide signals in the region of (12.14-12.35) and (14.17-14.43)
ppm, respectively. The proton signals of the two benzothiazole and benzoylthiourea moieties appear at 7.08-8.16 ppm.
A theoretical study based on Density Functional Theory (DFT) and Time-Dependent (TD) DFT was conducted to optimize
the geometrical structure and investigate the electronic properties of title compounds. The highest occupied molecular
orbital (HOMO) was found on the benzothiazole moiety; while, the lowest-unoccupied molecular orbital (LUMO) was
located at the benzoylthiourea fragment. The DFT optimized structures possessed an intramolecular hydrogen bonding
and the types of para substituents used influenced the properties of hydrogen bonding.