Displaying publications 1 - 20 of 85 in total

  1. Ramani VC, Shah RD, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Sep 01;74(Pt 9):1254-1258.
    PMID: 30225111 DOI: 10.1107/S2056989018011477
    The title compound, C16H15N5O2, adopts the shape of the letter L with the dihedral angle between the outer pyridyl rings being 78.37 (5)°; the dihedral angles between the central pyrazolyl ring (r.m.s. deviation = 0.0023 Å) and the methyl-ene-bound pyridyl and methyoxypyridyl rings are 77.68 (5) and 7.84 (10)°, respectively. Intra-molecular amide-N-H⋯N(pyrazol-yl) and pyridyl-C-H⋯O(amide) inter-actions are evident and these preclude the participation of the amide-N-H and O atoms in inter-molecular inter-actions. The most notable feature of the mol-ecular packing is the formation of linear supra-molecular chains aligned along the b-axis direction mediated by weak carbonyl-C=O⋯π(triazol-yl) inter-actions. An analysis of the calculated Hirshfeld surfaces point to the importance of H⋯H (46.4%), C⋯H (22.4%), O⋯H (11.9%) and N⋯H (11.1%) contacts in the crystal.
    Matched MeSH terms: Amides
  2. Said N, Wong KC, Lau WJ, Khoo YS, Yeong YF, Othman NH, et al.
    Molecules, 2022 Dec 01;27(23).
    PMID: 36500475 DOI: 10.3390/molecules27238381
    Most researchers focused on developing highly selective membranes for CO2/CH4 separation, but their developed membranes often suffered from low permeance. In this present work, we aimed to develop an ultrahigh permeance membrane using a simple coating technique to overcome the trade-off between membrane permeance and selectivity. A commercial silicone membrane with superior permeance but low CO2/CH4 selectivity (in the range of 2-3) was selected as the host for surface modification. Our results revealed that out of the three silane agents tested, only tetraethyl orthosilicate (TEOS) improved the control membrane's permeance and selectivity. This can be due to its short structural chain and better compatibility with the silicone substrate. Further investigation revealed that higher CO2 permeance and selectivity could be attained by coating the membrane with two layers of TEOS. The surface integrity of the TEOS-coated membrane was further improved when an additional polyether block amide (Pebax) layer was established atop the TEOS layer. This additional layer sealed the pin holes of the TEOS layer and enhanced the resultant membrane's performance, achieving CO2/CH4 selectivity of ~19 at CO2 permeance of ~2.3 × 105 barrer. This performance placed our developed membrane to surpass the 2008 Robeson Upper Boundary.
    Matched MeSH terms: Amides*
  3. Al-Mulla EA, Yunus WM, Ibrahim NA, Rahman MZ
    J Oleo Sci, 2010;59(2):59-64.
    PMID: 20103977
    Fatty amides have been successfully synthesized from palm olein and urea by a one-step lipase catalyzed reaction. The use of immobilized lipase as the catalyst for the preparation reaction provides an easy isolation of the enzyme from the products and other components in the reaction mixture. The fatty amides were characterized using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance ((1)H NMR) technique and elemental analysis. The highest conversion percentage (96%) was obtained when the process was carried out for 36 hours using urea to palm oil ratio of 5.2: 1.0 at 40 degrees C. The method employed offers several advantages such as renewable and abundant of the raw material, simple reaction procedure, environmentally friendly process and high yield of the product.
    Matched MeSH terms: Amides/chemical synthesis*
  4. Lim HJ, Hasan MS, Chinna K
    Rev Bras Anestesiol, 2016 Jul-Aug;66(4):341-5.
    PMID: 27155777 DOI: 10.1016/j.bjan.2016.04.006
    A high sodium concentration is known to antagonize local anesthetics when infiltrated around neural tissue. Thus, we hypothesized that the onset time for sensory and motor blockade, in supraclavicular brachial plexus block using ropivacaine diluted with dextrose would be shorter than with saline.
    Matched MeSH terms: Amides
  5. Shanmuga Sundara Raj S, Yamin BM, Boshaala AM, Tarafder MT, Crouse KA, Fun HK
    Acta Crystallogr C, 2000 Aug;56 (Pt 8):1011-2.
    PMID: 10944308
    In the crystal structure of the title compound, C(14)H(12)N(2)O(2), the molecule lies about a twofold axis; two carbonyl groups and the H atoms of the N-N bond are in a trans orientation with respect to each other. In the crystal, each molecule is linked to the other and vice versa by intermolecular N-H.O hydrogen bonds between the amide hydrogen and the O atoms of neighbouring molecules to form two ten-membered rings, each of which has the graph-set motif C4R(2)(2)(10). This extends as a polymeric chain along the c axis.
    Matched MeSH terms: Amides
  6. Jotani MM, Yeo CI, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Oct 1;71(Pt 10):1236-41.
    PMID: 26594415 DOI: 10.1107/S2056989015017624
    In the title thio-semicarbazone, C11H15N3S, the p-tolyl-N-H and imino-N-H groups are anti and syn, respectively, to the central thione-S atom. This allows for the formation of an intra-molecular p-tolyl-N-H⋯N(imino) hydrogen bond. The mol-ecule is twisted with the dihedral angle between the p-tolyl ring and the non-hydrogen atoms of the N=CMe2 residue being 29.27 (8)°. The crystal packing features supra-molecular layers lying in the bc plane whereby centrosymmetric aggregates sustained by eight-membered thio-amide {⋯HNCS}2 synthons are linked by further N-H⋯S hydrogen bonds. Layers are connected via methyl-C-H⋯π inter-actions. The supra-molecular aggregation was further investigated by an analysis of the Hirshfeld surface and comparison made to related structures.
    Matched MeSH terms: Amides
  7. Yusof ENM, Tahir MIM, Ravoof TBSA, Tan SL, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Apr 01;73(Pt 4):543-549.
    PMID: 28435717 DOI: 10.1107/S2056989017003991
    The title di-thio-carbazate ester (I), C18H18N2S2 [systematic name: (E)-4-methyl-benzyl 2-[(E)-3-phenyl-allyl-idene]hydrazinecarbodi-thio-ate, comprises an almost planar central CN2S2 residue [r.m.s. deviation = 0.0131 Å]. The methyl-ene(tolyl-4) group forms a dihedral angle of 72.25 (4)° with the best plane through the remaining non-hydrogen atoms [r.m.s. deviation = 0.0586 Å] so the mol-ecule approximates mirror symmetry with the 4-tolyl group bis-ected by the plane. The configuration about both double bonds in the N-N=C-C=C chain is E; the chain has an all trans conformation. In the crystal, eight-membered centrosymmetric thio-amide synthons, {⋯HNCS}2, are formed via N-H⋯S(thione) hydrogen bonds. Connections between the dimers via C-H⋯π inter-actions lead to a three-dimensional architecture. A Hirshfeld surface analysis shows that (I) possesses an inter-action profile similar to that of a closely related analogue with an S-bound benzyl substituent, (II). Computational chemistry indicates the dimeric species of (II) connected via N-H⋯S hydrogen bonds is about 0.94 kcal mol(-1) more stable than that in (I).
    Matched MeSH terms: Amides
  8. Jotani MM, Yeo CI, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Dec 01;73(Pt 12):1889-1897.
    PMID: 29250410 DOI: 10.1107/S2056989017016280
    The title compound, C10H13NOS, is a second monoclinic polymorph (space group P21/c, Z' = 2) of the previously reported C2/c (Z = 1) polymorph [Tadbuppa & Tiekink (2005 ▸). Z. Kristallogr. New Cryst. Struct. 220, 395-396]. Two independent mol-ecules comprise the asymmetric unit of the new polymorph and each of these exists as a thioamide-thione tautomer. In each molecule, the central CNOS chromophore is strictly planar [r.m.s. deviations = 0.0003 and 0.0015 Å] and forms dihedral angles of 6.17 (5) and 20.78 (5)° with the N-bound 3-tolyl rings, thereby representing the major difference between the mol-ecules. The thione-S and thio-amide-N-H atoms are syn in each mol-ecule and this facilitates the formation of an eight-membered thio-amide {⋯SCNH}2 synthon between them; the dimeric aggregates are consolidated by pairwise 3-tolyl-C-H⋯S inter-actions. In the extended structure, supra-molecular layers parallel to (102) are formed via a combination of 3-tolyl-C-H⋯π(3-tol-yl) and weak π-π inter-actions [inter-centroid distance between 3-tolyl rings = 3.8535 (12) Å]. An analysis of the Hirshfeld surfaces calculated for both polymorphs reveals the near equivalence of one of the independent mol-ecules of the P21/c form to that in the C2/c form.
    Matched MeSH terms: Amides; Thioamides
  9. Arafath MA, Kwong HC, Adam F
    Acta Crystallogr E Crystallogr Commun, 2019 Oct 01;75(Pt 10):1486-1489.
    PMID: 31636980 DOI: 10.1107/S2056989019012623
    The PtII atom in the title complex, [Pt(C15H18N4O4S)(C2H6OS)], exists within a square-planar NS2O donor set provided by the N, S, O atoms of the di-anionic tridentate thio-semicarbazo ligand and a dimethyl sulfoxide S atom. The two chelate rings are coplanar, subtending a dihedral angle of 1.51 (7)°. The maximum deviation from an ideal square-planar geometry is seen in the five-membered chelate ring with an S-Pt-S bite angle of 96.45 (2)°. In the crystal, mol-ecules are linked via N-H⋯O, C-H⋯O, C-H⋯N and C-H⋯π inter-actions into two-dimensional networks lying parallel to the ab plane. The conformations of related cyclo-hexyl-hydrazine-1-carbo-thio-amide ligands are compared to that of the title compound.
    Matched MeSH terms: Amides
  10. Tan SL, Azizan AHS, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Oct 01;75(Pt 10):1472-1478.
    PMID: 31636978 DOI: 10.1107/S2056989019012581
    In the title tri-substituted thio-urea derivative, C13H18N2O3S, the thione-S and carbonyl-O atoms lie, to a first approximation, to the same side of the mol-ecule [the S-C-N-C torsion angle is -49.3 (2)°]. The CN2S plane is almost planar (r.m.s. deviation = 0.018 Å) with the hy-droxy-ethyl groups lying to either side of this plane. One hy-droxy-ethyl group is orientated towards the thio-amide functionality enabling the formation of an intra-molecular N-H⋯O hydrogen bond leading to an S(7) loop. The dihedral angle [72.12 (9)°] between the planes through the CN2S atoms and the 4-tolyl ring indicates the mol-ecule is twisted. The experimental mol-ecular structure is close to the gas-phase, geometry-optimized structure calculated by DFT methods. In the mol-ecular packing, hydroxyl-O-H⋯O(hydrox-yl) and hydroxyl-O-H⋯S(thione) hydrogen bonds lead to the formation of a supra-molecular layer in the ab plane; no directional inter-actions are found between layers. The influence of the specified supra-molecular inter-actions is apparent in the calculated Hirshfeld surfaces and these are shown to be attractive in non-covalent inter-action plots; the inter-action energies point to the important stabilization provided by directional O-H⋯O hydrogen bonds.
    Matched MeSH terms: Amides
  11. Syed S, Jotani MM, Halim SN, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Mar 1;72(Pt 3):391-8.
    PMID: 27006815 DOI: 10.1107/S2056989016002735
    The asymmetric unit of the title 2:1 co-crystal, 2C8H8O2·C14H14N4O2, comprises an acid mol-ecule in a general position and half a di-amide mol-ecule, the latter being located about a centre of inversion. In the acid, the carb-oxy-lic acid group is twisted out of the plane of the benzene ring to which it is attached [dihedral angle = 28.51 (8)°] and the carbonyl O atom and methyl group lie approximately to the same side of the mol-ecule [hy-droxy-O-C-C-C(H) torsion angle = -27.92 (17)°]. In the di-amide, the central C4N2O2 core is almost planar (r.m.s. deviation = 0.031 Å), and the pyridyl rings are perpendicular, lying to either side of the central plane [central residue/pyridyl dihedral angle = 88.60 (5)°]. In the mol-ecular packing, three-mol-ecule aggregates are formed via hy-droxy-O-H⋯N(pyrid-yl) hydrogen bonds. These are connected into a supra-molecular layer parallel to (12[Formula: see text]) via amide-N-H⋯O(carbon-yl) hydrogen bonds, as well as methyl-ene-C-H⋯O(amide) inter-actions. Significant π-π inter-actions occur between benzene/benzene, pyrid-yl/benzene and pyrid-yl/pyridyl rings within and between layers to consolidate the three-dimensional packing.
    Matched MeSH terms: Amides
  12. Cardoso LN, Nogueira TC, Wardell JL, Wardell SM, de Souza MV, Jotani MM, et al.
    Acta Crystallogr E Crystallogr Commun, 2016 Jul 1;72(Pt 7):1025-31.
    PMID: 27555956 DOI: 10.1107/S2056989016009968
    In the title carbohydrazide, C10H7N3O4S, the dihedral angle between the terminal five-membered rings is 27.4 (2)°, with these lying to the same side of the plane through the central CN2C(=O) atoms (r.m.s. deviation = 0.0403 Å), leading to a curved mol-ecule. The conformation about the C=N imine bond [1.281 (5) Å] is E, and the carbonyl O and amide H atoms are anti. In the crystal, N-H⋯O hydrogen bonds lead to supra-molecular chains, generated by a 41 screw-axis along the c direction. A three-dimensional architecture is consolidated by thienyl-C-H⋯O(nitro) and furanyl-C-H⋯O(nitro) inter-actions, as well as π-π inter-actions between the thienyl and furanyl rings [inter-centroid distance = 3.515 (2) Å]. These, and other, weak inter-molecular inter-actions, e.g. nitro-N-O⋯π(thien-yl), have been investigated by Hirshfeld surface analysis, which confirms the dominance of the conventional N-H⋯O hydrogen bonding to the overall mol-ecular packing.
    Matched MeSH terms: Amides
  13. Salam MA, Hussein MA, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Jan 1;71(Pt 1):58-61.
    PMID: 25705451 DOI: 10.1107/S2056989014026498
    The title compound, C9H11N3O2S, is a second monoclinic (P21/c) polymorph of the previously reported Cc form [Tan et al. (2008b ▶). Acta Cryst. E64, o2224]. The mol-ecule is non-planar, with the dihedral angle between the N3CS residue (r.m.s. deviation = 0.0816 Å) and the benzene ring being 21.36 (4)°. The conformation about the C=N bond [1.292 (2) Å] is E, the two N-bound H atoms are anti, and the inner hy-droxy O-bound and outer amide N-bound H atoms form intra-molecular hydrogen bonds to the imine N atom. Crucially, the H atom of the outer hy-droxy group is approximately syn to the H atom of the benzene C atom connecting the two C atoms bearing the hy-droxy substituents. This arrangement enables the formation of supra-molecular tubes aligned along [010] and sustained by N-H⋯O, O-H⋯S and N-H⋯S hydrogen bonds; the tubes pack with no specific inter-actions between them. While the mol-ecular structure in the Cc form is comparable, the H atom of the outer hy-droxy group is approximately anti, rather than syn. This different orientation leads to the formation a three-dimensional architecture based on N-H⋯O and O-H⋯S hydrogen bonds.
    Matched MeSH terms: Amides
  14. Lai LC, Rahman CNBCA, Tahir MIM, Ravoof TBSA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Feb 01;74(Pt 2):256-260.
    PMID: 29850066 DOI: 10.1107/S2056989018001305
    The title disubstituted thio-urea derivative, C10H14N4S, features an almost planar imine (E configuration, C3N) core flanked by thio-urea (CN2S) and methyl-pyridyl (C5N) residues (each plane has a r.m.s. deviation of the respective fitted atoms of 0.0066 Å). The dihedral angles between the core and the thio-urea and pyridyl residues are 20.25 (8) and 7.60 (9)°, respectively, indicating twists in the mol-ecule; the dihedral angle between the outer planes is 13.62 (7)°. There is an anti-disposition of the amine-N-H atoms which allows for the formation of an intra-molecular amine-N-H⋯N(imine) hydrogen bond that closes an S(5) loop. In the crystal, amine-N-H⋯N(pyrid-yl) hydrogen bonds lead to zigzag (glide symmetry) supra-molecular chains along the c-axis direction. These are connected into a supra-molecular layer propagating in the bc plane by thio-amide-N-H⋯S(thione) hydrogen bonds via eight-membered thio-amide {⋯HNCS}2 synthons.
    Matched MeSH terms: Amides
  15. Moshikur RM, Ali MK, Wakabayashi R, Moniruzzaman M, Goto M
    Mol Pharm, 2021 08 02;18(8):3108-3115.
    PMID: 34250805 DOI: 10.1021/acs.molpharmaceut.1c00324
    Coronavirus disease 2019 (COVID-19) has spread across the world, and no specific antiviral drugs have yet been approved to combat this disease. Favipiravir (FAV) is an antiviral drug that is currently in clinical trials for use against COVID-19. However, the delivery of FAV is challenging because of its limited solubility, and its formulation is difficult with common organic solvents and water. To address these issues, four FAV ionic liquids (FAV-ILs) were synthesized as potent antiviral prodrugs and were fully characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectrometry, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC). The aqueous solubility and in vivo pharmacokinetic properties of the FAV-ILs were also evaluated. The FAV-ILs exhibited improved aqueous solubility by 78 to 125 orders of magnitude when compared with that of free FAV. Upon oral dosing in mice, the absolute bioavailability of the β-alanine ethyl ester FAV formulation was increased 1.9-fold compared with that of the control FAV formulation. The peak blood concentration, elimination half-life, and mean absorption time of FAV were also increased by 1.5-, 2.0-, and 1.5-fold, respectively, compared with the control. Furthermore, the FAV in the FAV-ILs exhibited significantly different biodistribution compared with the control FAV formulation. Interestingly, drug accumulation in the lungs and liver was improved 1.5-fold and 1.3-fold, respectively, compared with the control FAV formulation. These results indicate that the use of ILs exhibits potential as a simple, scalable strategy to improve the solubility and oral absorption of hydrophobic drugs, such as FAV.
    Matched MeSH terms: Amides/administration & dosage*; Amides/chemical synthesis; Amides/pharmacokinetics; Amides/chemistry
  16. Kow CS, Ramachandram DS, Hasan SS
    Int Immunopharmacol, 2022 Feb;103:108455.
    PMID: 34959188 DOI: 10.1016/j.intimp.2021.108455
    Matched MeSH terms: Amides/therapeutic use*
  17. Chong KC, Lai SO, Lau WJ, Thiam HS, Ismail AF, Roslan RA
    Polymers (Basel), 2018 Jan 28;10(2).
    PMID: 30966162 DOI: 10.3390/polym10020126
    Air pollution is a widely discussed topic amongst the academic and industrial spheres as it can bring adverse effects to human health and economic loss. As humans spend most of their time at the office and at home, good indoor air quality with enriched oxygen concentration is particularly important. In this study, polysulfone (PSF) hollow fiber membranes fabricated by dry-jet wet phase inversion method were coated by a layer of polydimethylsiloxane (PDMS) or poly(ether block amide) (PEBAX) at different concentrations and used to evaluate their performance in gas separation for oxygen enrichment. The surface-coated membranes were characterized using SEM and EDX to determine the coating layer thickness and surface chemical properties, respectively. Results from the gas permeation study revealed that the PSF membrane coated with PDMS offered higher permeance and selectivity compared to the membrane coated with PEBAX. The best performing PDMS-coated membrane demonstrated oxygen and nitrogen gas permeance of 18.31 and 4.01 GPU, respectively with oxygen/nitrogen selectivity of 4.56. Meanwhile, the PEBAX-coated membrane only showed 12.23 and 3.11 GPU for oxygen and nitrogen gas, respectively with a selectivity of 3.94. It can be concluded the PDMS coating is more promising for PSF hollow fiber membrane compared to the PEBAX coating for the oxygen enrichment process.
    Matched MeSH terms: Amides
  18. Tan MY, Crouse KA, Ravoof TBSA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2018 Jan 01;74(Pt 1):21-27.
    PMID: 29416884 DOI: 10.1107/S2056989017017273
    Two independent mol-ecules (A and B) comprise the asymmetric unit of the title compound, C18H21N3O3. The urea moiety is disubstituted with one amine being linked to a phenyl ring, which is twisted out of the plane of the CN2O urea core [dihedral angles = 25.57 (11) (A) and 29.13 (10)° (B)]. The second amine is connected to an imine (E conformation), which is linked in turn to an ethane bridge that links a disubstituted benzene ring. Intra-molecular amine-N-H⋯N(imine) and hydroxyl-O-H⋯O(meth-oxy) hydrogen bonds close S(5) loops in each case. The mol-ecules have twisted conformations with the dihedral angles between the outer rings being 38.64 (81) (A) and 48.55 (7)° (B). In the crystal, amide-N-H⋯O(amide) hydrogen bonds link the mol-ecules A and B via an eight-membered {⋯HNCO}2 synthon. Further associations between mol-ecules, leading to supra-molecular layers in the ac plane, are hydrogen bonds of the type hydroxyl-O-H⋯N(imine) and phenyl-amine-N-H⋯O(meth-oxy). Connections between layers, leading to a three-dimensional architecture, comprise benzene-C-H⋯O(hy-droxy) inter-actions. A detailed analysis of the calculated Hirshfeld surfaces shows mol-ecules A and B participate in very similar inter-molecular inter-actions and that any variations relate to conformational differences between the mol-ecules.
    Matched MeSH terms: Amides
  19. Tan MY, Crouse KA, Ravoof TBSA, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Nov 01;73(Pt 11):1607-1611.
    PMID: 29152334 DOI: 10.1107/S2056989017014128
    The title compound, C23H21N3O2, is constructed about an almost planar disubstituted amino-urea residue (r.m.s. deviation = 0.0201 Å), which features an intra-molecular amine-N-H⋯N(imine) hydrogen bond. In the 'all-trans' chain connecting this to the terminal meth-oxy-benzene residue, the conformation about each of the imine and ethyl-ene double bonds is E. In the crystal, amide-N-H⋯O(carbon-yl) hydrogen bonds connect centrosymmetrically related mol-ecules into dimeric aggregates, which also incorporate ethyl-ene-C-H⋯O(amide) inter-actions. The dimers are linked by amine-phenyl-C-H⋯π(imine-phen-yl) and meth-oxy-benzene-C-H⋯π(amine-phen-yl) inter-actions to generate a three-dimensional network. The importance of C-H⋯π inter-actions in the mol-ecular packing is reflected in the relatively high contributions made by C⋯H/H⋯C contacts to the Hirshfeld surface, i.e. 31.6%.
    Matched MeSH terms: Amides
  20. Tan SL, Halcovitch NR, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2019 Aug 01;75(Pt 8):1133-1139.
    PMID: 31417779 DOI: 10.1107/S2056989019009551
    The asymmetric unit of the title 1:1 solvate, C14H14N4O2·C6H6 [systematic name of the oxalamide mol-ecule: N,N'-bis-(pyridin-4-ylmeth-yl)ethanedi-amide], comprises a half mol-ecule of each constituent as each is disposed about a centre of inversion. In the oxalamide mol-ecule, the central C2N2O2 atoms are planar (r.m.s. deviation = 0.0006 Å). An intra-molecular amide-N-H⋯O(amide) hydrogen bond is evident, which gives rise to an S(5) loop. Overall, the mol-ecule adopts an anti-periplanar disposition of the pyridyl rings, and an orthogonal relationship is evident between the central plane and each terminal pyridyl ring [dihedral angle = 86.89 (3)°]. In the crystal, supra-molecular layers parallel to (10) are generated owing the formation of amide-N-H⋯N(pyrid-yl) hydrogen bonds. The layers stack encompassing benzene mol-ecules which provide the links between layers via methyl-ene-C-H⋯π(benzene) and benzene-C-H⋯π(pyrid-yl) inter-actions. The specified contacts are indicated in an analysis of the calculated Hirshfeld surfaces. The energy of stabilization provided by the conventional hydrogen bonding (approximately 40 kJ mol-1; electrostatic forces) is just over double that by the C-H⋯π contacts (dispersion forces).
    Matched MeSH terms: Amides
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links