Affiliations 

  • 1 Department of Ophthalmology, Shaanxi Provincial People's Hospital, Shaanxi 710068, China. Electronic address: xueyushunxue@sina.com
  • 2 Innoscience Research Sdn Bhd, Jalan USJ 25/1, Subang Jaya, Selangor 47650, Malaysia
J Pharm Sci, 2020 05;109(5):1714-1724.
PMID: 32007507 DOI: 10.1016/j.xphs.2020.01.022

Abstract

Olopatadine HCl is an antiallergic drug used for the management of allergic conjunctivitis. Currently, it is delivered via eye drop solution, which is highly inefficient due to low bioavailability. Silicone contact lenses can be used to sustain the release of ophthalmic drugs. However, the presence of drug alters the optical transmittance and physical properties of the contact lens. The objective was to design a novel polyvinyl pyrrolidone (PVP)-coated olopatadine-ethyl cellulose microparticles-laden doughnut contact lens to sustained ocular delivery with limited alteration to the optical and swelling properties of the contact lens. The doughnut was implanted within the periphery of the lens using modified casting technique. Olopatadine HCl was loaded by soaking (SM-OL), direct loading (DL-OL), and doughnut casting method (DNT-OL). PVP (comfort agent) was loaded on the surface of contact lens for all the batches via novel curing technique. The in vitro olopatadine HCl release data of SM-OL (up to 48-72 h) and DL-OL batches (up to 72 h) showed high burst release, whereas DNT-OL batch showed sustained release up to 120 h without significant (p > 0.05) alteration in the optical and swelling properties of contact lens. All the batches showed sustained release of PVP up to 120 h. The in vivo studies in the rabbit tear fluid showed improvement in the olopatadine HCl and PVP retention time in comparison to eye drop solution. The PVP-loaded DNT-OL-500 lens showed tear stabilization (comfort wear) in Schirmer strip test (rabbits) with no protein adherence in comparison to DNT-OL-500 lens without PVP. The study demonstrated the successful delivery of olopatadine HCl and PVP-K30 from the doughnut contact lens for the extended period with limited alteration to the optical and swelling properties of contact lens.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.