Affiliations 

  • 1 Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
  • 2 Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
  • 3 School of Fundamental Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
  • 4 Atta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor, Malaysia
Foods, 2020 Feb 11;9(2).
PMID: 32053982 DOI: 10.3390/foods9020173

Abstract

Pineapple (Ananascomosus) waste is a promising source of metabolites for therapeutics, functional foods, and cosmeceutical applications. This study strives to characterize the complete metabolite profiles of a variety of MD2 pineapple waste extracts. Metabolomics strategies were utilized to identify bioactive metabolites of this variety prepared with different solvent ratios. Each pineapple waste extract was first screened for total phenolic content, 2,2-diphenyl-1-picrylhydrazyl free radical scavenging, nitric oxide scavenging, and α-glucosidase inhibitory activities. The highest TPC was found in all samples of the peel, crown, and core extracted using a 50% ethanol ratio, even though the results were fairly significant than those obtained for other ethanol ratios. Additionally, crown extracted with a 100% ethanol ratio demonstrated the highest potency in DPPH and NO scavenging activity, with IC50 values of 296.31 and 338.52 µg/mL, respectively. Peel extracted with 100% ethanol exhibited the highest α-glucosidase inhibitory activity with an IC50 value of 92.95 µg/mL. Then, the extracts were analyzed and the data from 1H NMR were processed using multivariate data analysis. A partial least squares and correlogram plot suggested that 3-methylglutaric acid, threonine, valine, and α-linolenic acid were the main contributors to the antioxidant activities, whereas epicatechin was responsible for the α-glucosidase inhibitory activity. Relative quantification further supported that 100% crown extract was among the extracts that possessed the most abundant potential metabolites. The present study demonstrated that the crown and peel parts of MD2 pineapple extracted with 100% ethanol are potentially natural sources of antioxidants and α-glucosidase inhibitors, respectively.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications