Affiliations 

  • 1 Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Electronic address: weeszeyee@gmail.com
  • 2 Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia. Electronic address: zaharin@upm.edu.my
  • 3 Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia. Electronic address: fatimamy@upm.edu.my
  • 4 Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia. Electronic address: smpraveena@upm.edu.my
Chemosphere, 2021 Feb;264(Pt 1):128488.
PMID: 33045559 DOI: 10.1016/j.chemosphere.2020.128488

Abstract

Contamination of endocrine disrupting compounds (EDCs) in tap water is an emerging global issue, and there are abundant influencing factors that have an ambivalent effect on their transportation and fate. Different housing types vary in terms of water distribution system operation and design, water consumption choices, and other hydraulic factors, which potentially affect the dynamics, loadings, and partitioning of pollutants in tap water. Thus, this study analyzed 18 multiclass EDCs in tap water from different housing types (i.e., landed and high-rise) and the associated health risks. Sample analyses revealed the presence of 16 EDCs, namely hormones (5), pharmaceuticals (8), a pesticide (1), and plasticizers (2) in tap water, with the prevalent occurrence of bisphenol A up to 66.40 ng/L in high-rise housing. The presence of caffeine and sulfamethoxazole distribution in tap water was significantly different between landed and high-rise housings (t(152) = -2.298, p = 0.023 and t(109) = 2.135, p = 0.035). Moreover, the salinity and conductivity of tap water in high-rise housings were significantly higher compared to those in landed housings (t(122) = 2.411, p = 0.017 and t(94) = 2.997, p = 0.003, respectively). Furthermore, there were no potential health risks of EDCs (risk quotient 

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.