Affiliations 

  • 1 Medical Radiation Programme, School of Health Sciences, Universiti Sains Malaysia, Malaysia
  • 2 Engineering Physics Laboratory, School of Physics, Universiti Sains Malaysia, Malaysia
  • 3 Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, Malaysia
Phys Med Biol, 2021 Apr 12;66(8).
PMID: 33725685 DOI: 10.1088/1361-6560/abef44

Abstract

Light-emitting diodes (LEDs) could be a potential dosimetry candidate because they are radiation hard, spectrally selective, direct band gap, and low-cost devices. Thus, an LED-based detector prototype was designed and characterized for dosimetry. A 20 × 20 cm2array of surface mount device LED chips was sandwiched in photovoltaic mode between two intensifying screens to form a dosimetric system. The system was enclosed in a light-tight air cavity using black vinyl tape. The screens converted diagnostic x-ray beams into fluorescent blue light. LEDs, applied in detector mode, converted the fluorescent light into radiation-induced currents. A digital multimeter converted the analog currents into digital voltage signals. Prototype characterization was executed using (a) IEC 61267's RQR 7 (90 kVp) and RQR 8 (100 kVp) beam qualities, and (b) low (25 mAs) and high (80 mAs) beam quantities. A standard dosimeter probe was simultaneously exposed with the prototype to measure the prototype's absorbed dose. In all exposures, the x-ray beams were perpendicularly incident on both the dosimeter and prototype, at a fixed source to detector distance-60 cm. The LED array prototype's minimum detectable dose was 0.139 mGy, and the maximum dose implemented herein was ∼13 mGy. The prototype was 99.18% and 98.64% linearly sensitive to absorbed dose and tube current-time product (mAs), respectively. The system was ±4.69% energy, ±6.8% dose, and ±7.7% dose rate dependent. Two prototype data sets were 89.93% repeatable. We fabricated an ultrathin (5 mm), lightweight (130 g), and a relatively low-cost LED-based dosimetric prototype. The prototype executed a simple, efficient, and accurate real-time dosimetric mechanism. It could thus be an alternative to the current passive dosimetric systems.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.