Displaying all 18 publications

Abstract:
Sort:
  1. Omar AF, MatJafri MZ
    Sensors (Basel), 2013;13(4):4876-83.
    PMID: 23584118 DOI: 10.3390/s130404876
    This study presents a novel application of near infrared (NIR) spectral linearisation for measuring the soluble solids content (SSC) of carambola fruits. NIR spectra were measured using reflectance and interactance methods. In this study, only the interactance measurement technique successfully generated a reliable measurement result with a coefficient of determination of (R2) = 0.724 and a root mean square error of prediction for (RMSEP) = 0.461° Brix. The results from this technique produced a highly accurate and stable prediction model compared with multiple linear regression techniques.
  2. Omar AF, Atan H, Matjafri MZ
    Molecules, 2012 Jun 15;17(6):7440-50.
    PMID: 22706373 DOI: 10.3390/molecules17067440
    Acid content is one of the important quality attributes in determining the maturity index of agricultural product, particularly fruits. Despite the fact that much research on the measurement of acidity in fruits through non-destructive spectroscopy analysis at NIR wavelengths between 700 to 1,000 nm has been conducted, the same response towards individual acids is not well known. This paper presents NIR spectroscopy analysis on aqueous citric, tartaric, malic and oxalic solutions through quantitative analysis by selecting a set of wavelengths that can best be used to measure the pH of the solutions. The aquaphotomics study of the acid solutions has generated R² above 0.9 for the measurement of all acids. The most important wavelengths for pH are located at 918-925 nm and 990-996 nm, while at 975 nm for water.
  3. Omar AF, Mokhtar IW, Ahmad MS
    J Int Soc Prev Community Dent, 2023;13(2):148-156.
    PMID: 37223444 DOI: 10.4103/jispcd.JISPCD_234_22
    AIMS AND OBJECTIVES: A "caregiver" is responsible for managing the basic needs of others, including individuals with special needs (IWSNs). Caregivers play an important role in the well-being of IWSNs, though caring can lead to a decline in health and quality of life. This qualitative study aimed to investigate the perceived healthcare challenges faced by caregivers of IWSNs in Malaysia.

    MATERIALS AND METHODS: Thirty-two primary caregivers were interviewed via audio-recorded semistructured focus group discussions to investigate their perceived barriers and challenges in caring for IWSNs. The qualitative data were then analyzed via thematic analysis.

    RESULTS: Thirty-two participants took part in a total of nine discussion sessions, where the majority were females (n = 29; 90.63%) and from the Malay race (n = 30; 93.75%). Most of the IWSNs under their care had autism (n = 11; 34.38%) and were between 6 and 10 years of age (n = 13; 40.63%). The main themes identified were related to healthcare services, support systems, caregivers' personal factors, and IWSN issues. Within the healthcare services domain, themes regarding the accessibility and appropriateness of healthcare facilities and the attitudes of staff were uncovered, whereas in the support system domain, themes pertaining to community and peer, family, and governmental support were discussed. In the domain of caregivers' personal factors, themes regarding stress with the burden of care and feelings of guilt were noted, and in the area of IWSN factors, the theme of behavioral difficulties exhibited by IWSNs was discussed.

    CONCLUSION: Primary caregivers in Malaysia face challenges with healthcare facilities and staff, gaining support from the community, family, and government, burning out, and feeling guilty as well as behavior issues of their IWSN. Thus, understanding these challenges is vital in providing healthcare services that cater to not only IWSNs but also their caregivers to ensure the success and well-being of all involved.

  4. Omar AF, Matjafri MZ
    Sensors (Basel), 2009;9(10):8311-35.
    PMID: 22408507 DOI: 10.3390/s91008311
    Turbidimeters operate based on the optical phenomena that occur when incident light through water body is scattered by the existence of foreign particles which are suspended within it. This review paper elaborates on the standards and factors that may influence the measurement of turbidity. The discussion also focuses on the optical fiber sensor technologies that have been applied within the lab and field environment and have been implemented in the measurement of water turbidity and concentration of particles. This paper also discusses and compares results from three different turbidimeter designs that use various optical components. Mohd Zubir and Bashah and Daraigan have introduced a design which has simple configurations. Omar and MatJafri, on the other hand, have established a new turbidimeter design that makes use of optical fiber cable as the light transferring medium. The application of fiber optic cable to the turbidimeter will present a flexible measurement technique, allowing measurements to be made online. Scattered light measurement through optical fiber cable requires a highly sensitive detector to interpret the scattered light signal. This has made the optical fiber system have higher sensitivity in measuring turbidity compared to the other two simple turbidimeters presented in this paper. Fiber optic sensors provide the potential for increased sensitivity over large concentration ranges. However, many challenges must be examined to develop sensors that can collect reliable turbidity measurements in situ.
  5. Damulira E, Yusoff MNS, Omar AF, Mohd Taib NH
    Sensors (Basel), 2019 May 14;19(10).
    PMID: 31091779 DOI: 10.3390/s19102226
    Numerous instruments such as ionization chambers, hand-held and pocket dosimeters of various types, film badges, thermoluminescent dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) are used to measure and monitor radiation in medical applications. Of recent, photonic devices have also been adopted. This article evaluates recent research and advancements in the applications of photonic devices in medical radiation detection primarily focusing on four types; photodiodes - including light-emitting diodes (LEDs), phototransistors-including metal oxide semiconductor field effect transistors (MOSFETs), photovoltaic sensors/solar cells, and charge coupled devices/charge metal oxide semiconductors (CCD/CMOS) cameras. A comprehensive analysis of the operating principles and recent technologies of these devices is performed. Further, critical evaluation and comparison of their benefits and limitations as dosimeters is done based on the available studies. Common factors barring photonic devices from being used as radiation detectors are also discussed; with suggestions on possible solutions to overcome these barriers. Finally, the potentials of these devices and the challenges of realizing their applications as quintessential dosimeters are highlighted for future research and improvements.
  6. Damulira E, Yusoff MNS, Omar AF, Mohd Taib NH
    Phys Med Biol, 2021 Apr 12;66(8).
    PMID: 33725685 DOI: 10.1088/1361-6560/abef44
    Light-emitting diodes (LEDs) could be a potential dosimetry candidate because they are radiation hard, spectrally selective, direct band gap, and low-cost devices. Thus, an LED-based detector prototype was designed and characterized for dosimetry. A 20 × 20 cm2array of surface mount device LED chips was sandwiched in photovoltaic mode between two intensifying screens to form a dosimetric system. The system was enclosed in a light-tight air cavity using black vinyl tape. The screens converted diagnostic x-ray beams into fluorescent blue light. LEDs, applied in detector mode, converted the fluorescent light into radiation-induced currents. A digital multimeter converted the analog currents into digital voltage signals. Prototype characterization was executed using (a) IEC 61267's RQR 7 (90 kVp) and RQR 8 (100 kVp) beam qualities, and (b) low (25 mAs) and high (80 mAs) beam quantities. A standard dosimeter probe was simultaneously exposed with the prototype to measure the prototype's absorbed dose. In all exposures, the x-ray beams were perpendicularly incident on both the dosimeter and prototype, at a fixed source to detector distance-60 cm. The LED array prototype's minimum detectable dose was 0.139 mGy, and the maximum dose implemented herein was ∼13 mGy. The prototype was 99.18% and 98.64% linearly sensitive to absorbed dose and tube current-time product (mAs), respectively. The system was ±4.69% energy, ±6.8% dose, and ±7.7% dose rate dependent. Two prototype data sets were 89.93% repeatable. We fabricated an ultrathin (5 mm), lightweight (130 g), and a relatively low-cost LED-based dosimetric prototype. The prototype executed a simple, efficient, and accurate real-time dosimetric mechanism. It could thus be an alternative to the current passive dosimetric systems.
  7. Al-Turki A, Murali M, Omar AF, Rehan M, Sayyed RZ
    Front Microbiol, 2023;14:1214845.
    PMID: 37829451 DOI: 10.3389/fmicb.2023.1214845
    The present crisis at hand revolves around the need to enhance plant resilience to various environmental stresses, including abiotic and biotic stresses, to ensure sustainable agriculture and mitigate the impact of climate change on crop production. One such promising approach is the utilization of plant growth-promoting rhizobacteria (PGPR) to mediate plant resilience to these stresses. Plants are constantly exposed to various stress factors, such as drought, salinity, pathogens, and nutrient deficiencies, which can significantly reduce crop yield and quality. The PGPR are beneficial microbes that reside in the rhizosphere of plants and have been shown to positively influence plant growth and stress tolerance through various mechanisms, including nutrient solubilization, phytohormone production, and induction of systemic resistance. The review comprehensively examines the various mechanisms through which PGPR promotes plant resilience, including nutrient acquisition, hormonal regulation, and defense induction, focusing on recent research findings. The advancements made in the field of PGPR-mediated resilience through multi-omics approaches (viz., genomics, transcriptomics, proteomics, and metabolomics) to unravel the intricate interactions between PGPR and plants have been discussed including their molecular pathways involved in stress tolerance. Besides, the review also emphasizes the importance of continued research and implementation of PGPR-based strategies to address the pressing challenges facing global food security including commercialization of PGPR-based bio-formulations for sustainable agricultural.
  8. Ghani KA, Sudik S, Omar AF, Mail MH, Seeni A
    PMID: 31216502 DOI: 10.1016/j.saa.2019.117241
    Cancer is increasing in incidence and the leading cause of death worldwide. Controlling and reducing cancer requires early detection and technique to accurately detect and quantify predictive biomarkers. Optical spectroscopy has shown promising non-destructive ability to display distinctive spectral characteristics between cancerous and normal tissues from different part of human organ. Nonetheless, not many information is available on spectroscopic properties of cancer cell lines. In this research, the visible-near infrared (VIS-NIR) absorbance spectroscopy measurement of cultured cervical cancer (HeLa) and prostate cancer cells (DU145) lines has been performed to develop spectral signature of cancer cells and to generate algorithm to quantify cancer cells. Spectroscopic measurement on mouse skin fibroblast (L929) was also taken for comparative purposes. In visible region, the raw cells' spectra do not produce any noticeable peak absorbance that provides information on color because the medium used for cells is colorless and transparent. NIR wavelength between 950 and 975 nm exhibit significant peak due to water absorbance by the medium. Development of spectral signature for the cells through the application of regression technique significantly enhances the diverse characteristics between L929, HeLa and DU145. The application of multiple linear regression allows high measurement accuracy of the cells with coefficient of determination above 0.94.
  9. Amran EN, Sudik S, Omar AF, Mail MH, Seeni A
    Photodiagnosis Photodyn Ther, 2019 Sep;27:380-384.
    PMID: 31301437 DOI: 10.1016/j.pdpdt.2019.07.006
    The objective of this research is to examine the relationship between the color changes of phenol red and the growth of cancer cells, i.e., HeLa and DU145 cells, over a specific period of time. Normal mouse skin fibroblasts (L929 cells) were used as a reference. In this research, the color changes of phenol red due to the acidification of the cell culture medium from the growth of the cells over a period of nine hours showed potential colorimetric characteristics of cancer cells. The color changes of phenol red were observed using visible absorbance spectroscopy. The transformation of the absorbance spectra into coefficients of determination against the examined range of wavelengths created a distinctive spectral signature that signifies phenol red discoloration in cancer and normal cell culture lines.
  10. Damulira E, Yusoff MNS, Omar AF, Mohd Taib NH, Ahmed NM
    Appl Radiat Isot, 2021 Apr;170:109622.
    PMID: 33592486 DOI: 10.1016/j.apradiso.2021.109622
    This study compares the real-time dosimetric performance of a bpw34 photodiode (PD) and cold white light-emitting diodes (LEDs) based on diagnostic X-ray-induced signals. Signals were extracted when both the transducers were under identical exposure settings, including source-to-detector distance (SDD), tube voltage (kVp), and current-time product (mAs). The transducers were in a photovoltaic configuration, and black vinyl tape was applied on transducer active areas as a form of optical shielding. X-ray beam spectra and energies were simulated using Matlab-based Spektr functions. Transducer performance analysis was based on signal linearity to mAs and air kerma, and sensitivity dependence on absorbed dose, energy, and dose rate. Bpw34 PD and cold white LED output signals were 84.8% and 85.5% precise, respectively. PD signals were 94.7% linear to mAs, whereas LED signals were 91.9%. PD and LED signal linearity to dose coefficients were 0.9397 and 0.9128, respectively. Both transducers exhibited similar dose and energy dependence. However, cold white LEDs were 0.73% less dose rate dependent than the bpw34 PD. Cold white LEDs demonstrated potential in detecting diagnostic X-rays because their performance was similar to that of the bpw34 PD. Moreover, the cold white LED array's dosimetric response was independent of the heel effect. Although cold white LED signals were lower than bpw34 PD signals, they were quantifiable and electronically amplifiable.
  11. Kamil WNWA, Zainal M, Omar AF, Jamaluddin TIBT, Ahmad MS
    Spec Care Dentist, 2021 Jan;41(1):129-134.
    PMID: 33128415 DOI: 10.1111/scd.12536
    In this report, we present the case of a 68-year-old male patient with a complaint of mastication and speech limitations one year after the prescription of a fixed bridge and the construction of "connected" crowns by a "street dentist." A thorough oral examination revealed a multilobulated swelling in the right buccal mucosa that extended to the buccal sulcus. The lesion, which was first noticed as a small, asymptomatic swelling by the patient one year prior, seemed to have undergone enlargement since the prostheses were prescribed. The lesion was completely removed via surgical excision under general anesthesia. Histopathological examination of the excisional mass revealed mature adipocytes and features consistent with conventional or classic lipoma. This case highlights the importance of receiving dental treatment from a qualified professional, whose responsibilities include performing a thorough examination of the oral cavity during treatment planning and delivery, review appointments, and regular dental visits. Such investigation is important to allow for early disease detection and control, especially for patients with complex treatment needs as well as those who may present with asymptomatic and slow-growing lesions such as lipomas.
  12. Mohd Hilmi Tan MIS, Jamlos MF, Omar AF, Dzaharudin F, Chalermwisutkul S, Akkaraekthalin P
    Sensors (Basel), 2021 Apr 27;21(9).
    PMID: 33925576 DOI: 10.3390/s21093052
    Ganoderma boninense (G. boninense) infection reduces the productivity of oil palms and causes a serious threat to the palm oil industry. This catastrophic disease ultimately destroys the basal tissues of oil palm, causing the eventual death of the palm. Early detection of G. boninense is vital since there is no effective treatment to stop the continuing spread of the disease. This review describes past and future prospects of integrated research of near-infrared spectroscopy (NIRS), machine learning classification for predictive analytics and signal processing towards an early G. boninense detection system. This effort could reduce the cost of plantation management and avoid production losses. Remarkably, (i) spectroscopy techniques are more reliable than other detection techniques such as serological, molecular, biomarker-based sensor and imaging techniques in reactions with organic tissues, (ii) the NIR spectrum is more precise and sensitive to particular diseases, including G. boninense, compared to visible light and (iii) hand-held NIRS for in situ measurement is used to explore the efficacy of an early detection system in real time using ML classifier algorithms and a predictive analytics model. The non-destructive, environmentally friendly (no chemicals involved), mobile and sensitive leads the NIRS with ML and predictive analytics as a significant platform towards early detection of G. boninense in the future.
  13. Raypah ME, Omar AF, Muncan J, Zulkurnain M, Abdul Najib AR
    Molecules, 2022 Apr 03;27(7).
    PMID: 35408723 DOI: 10.3390/molecules27072324
    Honey is a natural product that is considered globally one of the most widely important foods. Various studies on authenticity detection of honey have been fulfilled using visible and near-infrared (Vis-NIR) spectroscopy techniques. However, there are limited studies on stingless bee honey (SBH) despite the increase of market demand for this food product. The objective of this work was to present the potential of Vis-NIR absorbance spectroscopy for profiling, classifying, and quantifying the adulterated SBH. The SBH sample was mixed with various percentages (10−90%) of adulterants, including distilled water, apple cider vinegar, and high fructose syrup. The results showed that the region at 400−1100 nm that is related to the color and water properties of the samples was effective to discriminate and quantify the adulterated SBH. By applying the principal component analysis (PCA) on adulterants and honey samples, the PCA score plot revealed the classification of the adulterants and adulterated SBHs. A partial least squares regression (PLSR) model was developed to quantify the contamination level in the SBH samples. The general PLSR model with the highest coefficient of determination and lowest root means square error of cross-validation (RCV2=0.96 and RMSECV=5.88 %) was acquired. The aquaphotomics analysis of adulteration in SBH with the three adulterants utilizing the short-wavelength NIR region (800−1100 nm) was presented. The structural changes of SBH due to adulteration were described in terms of the changes in the water molecular matrix, and the aquagrams were used to visualize the results. It was revealed that the integration of NIR spectroscopy with aquaphotomics could be used to detect the water molecular structures in the adulterated SBH.
  14. Alsaee SK, Omar AF, Ahmed NM, Alsadig A, Sulieman A, Alzimami K
    Dose Response, 2019;17(2):1559325819855532.
    PMID: 31236089 DOI: 10.1177/1559325819855532
    The purpose of this study is to investigate the potentiality of Gafchromic external beam therapy 3 (EBT3) film to measure low dosage of solar ultraviolet (SUV; 0-10 600 mJ/cm2) and x-ray (0-750 mGy) radiation. In this experiment, 2 groups of EBT3 films were prepared with size 2 cm × 1 cm. The first group of films was exposed by incremental SUV dose in the middle of the day. The other group was irradiated by x-ray at 100 kVp, 100 mA, and 2 S of tube voltage, tube current, and exposure time, respectively. The measured SUV consists of 90% ultraviolet A (UVA) and 10% ultraviolet B. The film discoloration was represented by visible absorbance spectroscopy technique using Jaz spectrometer from Ocean Optics Inc. Simple linear regression produced high accuracy with coefficients of determination, r 2 of 0.9804 and root mean square error (RMSE) of 434.88 mJ/cm2 for the measurement of SUV dose. On the other hand, r 2 of 0.98 and RMSE of 31 mGy was produced for the measurement of x-ray dose. The application of multiple linear regression enhanced the measurement accuracy with R 2 of 99% and 99.7% and RMSE of 327.06 mJ/cm2 and 15.045 mGy for SUV and x-ray dose, respectively. The spectral analysis shows a promising measurement at selected wavelengths for SUV and x-ray dose.
  15. Zahir SADM, Jamlos MF, Omar AF, Jamlos MA, Mamat R, Muncan J, et al.
    PMID: 37666099 DOI: 10.1016/j.saa.2023.123273
    Experiments demonstrated that visible and near-infrared (Vis-NIR) spectroscopy is a highly reliable tool for determining the nutritional status of plants. Although numerous studies on various kinds of plants have been conducted, there are only a few summaries of the research findings regarding the absorbance bands in the visible and near-infrared region and how they relate to the nutritional status of plants. This article will discuss the application of Vis-NIR spectroscopy for monitoring the nutrient conditions of plants, with a particular emphasis on three major components required by plants, namely nitrogen (N), phosphorus (P), and potassium (K), or NPK. Each section discussed different topics, for instance, the essential nutrients needed by plants, the application of Vis-NIR spectroscopy in nutrient status analysis, chemometrics tools, and absorbance bands related to the nutrient status, respectively. Deduction made concluded that factors affecting the plant's structure are contributed by several circumstances like the age of leaves, concentration of pigments, and water content. These factors are intertwined, strongly correlated, and can be observed in the visible and near-infrared regions. While the visible region is commonly utilised for nutritional analysis in plants, the literature review performed in this paper shows that the near-infrared region as well contains valuable information about the plant's nutritional status. A few wavelengths related to the direct estimation of nutrients in this review explained that information on nutrients can be linked with chlorophyll and water absorption bands such that N and P are the components of chlorophyll and protein; on the other hand, K exists in the form of cationic carbohydrates which are sensitive to water region.
  16. Mohd Suria TYI, Omar AF, Wan Mokhtar I, Rahman ANAA, Kamaruddin AA, Ahmad MS
    Spec Care Dentist, 2023;43(6):848-855.
    PMID: 37013967 DOI: 10.1111/scd.12857
    OBJECTIVES: This study aims to analyze the impact and students' perceptions of online peer-assisted learning (OPL), developed as an alternative and innovative approach to Special Care Dentistry (SCD) training during the COVID-19 pandemic. Online peer-assisted learning (OPL) is an alternative pedagogical approach that combines online education and peer-assisted teaching.

    METHODS: The OPL session was conducted by two postgraduate students in SCD (as teachers), to final year undergraduate dental students (as learners) (n = 90), supervised by two specialists in SCD-related areas (as supervisors). Vetted online pre- and post-intervention quizzes were conducted before and after the session, respectively, followed by an online validated feedback survey of the students' learning experiences. Meanwhile, a reflective session was conducted between the postgraduate students and supervisors to explore their perceptions of OPL. Quantitative data was analyzed via paired t-test (significance level, P 

  17. Adlim M, Surbakti MS, Omar AF, Rahmayani RFI, Hasmar AH, Ozmen I, et al.
    RSC Adv, 2024 Aug 29;14(38):27504-27513.
    PMID: 39221122 DOI: 10.1039/d4ra04901b
    A simple preparation of a paper strip test with a smartphone-based instrument for detecting dissolved mercury is still in development. This study aims to develop a smartphone-based colorimetric paper strip test using chitosan-stabilized silver nanoparticles for detecting dissolved mercury. The method demonstrated high sensitivity and selectivity for Hg2+ ions, with detection limits comparable to UV-vis spectrophotometry. Silver ions embedded in the chitosan matrix were reduced by either sodium NaBH4 or N2H4. Both chi-AgNP colloidal and chi-AgNP paper strips were tested for sensitivity of mercury(ii) solution detection with and without ion interference. The accuracy of colour change responding to the mercury concentration was recorded with several smartphones in a handmade cubical and a T-shape micro-studio. Only NaBH4 gives colloidal chi-AgNPs relatively dispersed, and the colloidal chi-AgNPs become aggregated when AgNP interacts with mercury(ii) ions. The colour change of chi-AgNP paper strips responding to the concentration of mercury(ii) and quantified using a smartphone is consistent when confirmed with UV-vis spectrophotometric determination with a comparable limit of detection (0.76 μM). The inferring ions do not significantly affect mercury(ii) analyses. Therefore, the paper strip integrated with the smartphone is effectively used for mercury(ii) detection in water as long as the mercury concentration is >1 μM. This finding might inspire advanced technology with a larger number of data references, and machine learning involvement to develop more compatible and simple mercury detection.
  18. Ali RM, Abdul Kader MASK, Wan Ahmad WA, Ong TK, Liew HB, Omar AF, et al.
    JACC Cardiovasc Interv, 2019 Mar 25;12(6):558-566.
    PMID: 30898253 DOI: 10.1016/j.jcin.2018.11.040
    OBJECTIVES: The aim of this randomized controlled trial was to investigate a novel sirolimus-coated balloon (SCB) compared with the best investigated paclitaxel-coated balloon (PCB).

    BACKGROUND: Treatment of coronary in-stent restenosis (ISR) remains challenging. PCBs are an established treatment option outside the United States with a Class I, Level of Evidence: A recommendation in the European guidelines. However, their efficacy is better in bare-metal stent (BMS) ISR compared with drug-eluting stent (DES) ISR.

    METHODS: Fifty patients with DES ISR were enrolled in a randomized, multicenter trial to compare a novel SCB (SeQuent SCB, 4 μg/mm2) with a clinically proven PCB (SeQuent Please Neo, 3 μg/mm2) in coronary DES ISR. The primary endpoint was angiographic late lumen loss at 6 months. Secondary endpoints included procedural success, major adverse cardiovascular events, and individual clinical endpoints such as stent thrombosis, cardiac death, target lesion myocardial infarction, clinically driven target lesion revascularization, and binary restenosis.

    RESULTS: Quantitative coronary angiography revealed no differences in baseline parameters. After 6 months, in-segment late lumen loss was 0.21 ± 0.54 mm in the PCB group versus 0.17 ± 0.55 mm in the SCB group (p = NS; per-protocol analysis). Clinical events up to 12 months also did not differ between the groups.

    CONCLUSIONS: This first-in-man comparison of a novel SCB with a crystalline coating shows similar angiographic outcomes in the treatment of coronary DES ISR compared with a clinically proven PCB. (Treatment of Coronary In-Stent Restenosis by a Sirolimus [Rapamycin] Coated Balloon or a Paclitaxel Coated Balloon [FIM LIMUS DCB]; NCT02996318).

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links