Affiliations 

  • 1 Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
  • 2 School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
  • 3 School of Architecture and Civil Engineering, Laboratory of Soil- and Groundwater-Management, Institute of Foundation Engineering, Water- and Waste-Management, University of Wuppertal, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, Republic of Korea
  • 4 College of Engineering, Science and Environment, The University of Newcastle (UON), Callaghan, NSW 2308, Australia
  • 5 Department of Medicine, Faculty of Medicine, Bioscience, and Nursing, MAHSA University, Jln SP 2, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
  • 6 Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia. Electronic address: PauLoke.Show@nottingham.edu.my
Sci Total Environ, 2021 Sep 20;788:147815.
PMID: 34034191 DOI: 10.1016/j.scitotenv.2021.147815

Abstract

Global plastic pollution has been a serious problem since many years and micro (nano) plastics (MNPs) have gained attention from researchers around the world. This is because MNPs able to exhibit toxicology and interact with potentially toxic elements (PTEs) in the environment, causing soil toxicity. The influences of MNPs on the soil systems and plant crops have been overlooked despite that MNPs can accumulate in the plant root system and generate detrimental impacts to the terrestrial environments. The consumption of these MNPs-contaminated plants or fruits by humans and animals will eventually lead to health deterioration. The identification and measurement of MNPs in various soil samples is challenging, making the understanding of the fate, environmental and ecological of MNPs in terrestrial ecosystem is limited. Prior to sample assessment, it is necessary to isolate the plastic particles from the environment samples, concentrate the plastic particles for analysis purpose to meet detection limit for analytical instrument. The isolation and pre-concentrated steps are challenging and may cause sample loss. Herein, this article reviews MNPs, including their fate in the environment and toxic effects exhibited towards soil microorganisms, plants and humans along with the interaction of MNPs with PTEs. In addition, various analysis methods of MNPs and management of MNPs as well as the crucial challenges and future research studies in combating MNPs in soil system are also discussed.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.