Displaying publications 1 - 20 of 57 in total

  1. Parthiban A, Gopal AAR, Siwayanan P, Chew KW
    J Hazard Mater, 2021 Sep 05;417:126107.
    PMID: 34020356 DOI: 10.1016/j.jhazmat.2021.126107
    Sulfur hexafluoride (SF6) is the most potent greenhouse gas contributed by the power and semiconductor industries. The global emissions of gas in the past 10 years have increased tremendously due to lack of disposal routes. This was brought to 190 nations' attention in the Kyoto Protocol for the need of emission control measures to reduce its impacts of climate change and global warming. Various novel techniques have surfaced to tackle this issue, such as non-thermal plasma (NTP) which includes radio frequency plasma, microwave plasma, dielectric barrier discharge, and electron beam. The main by-products resulting from the decomposition of SF6 by these techniques are sulfur oxyfluorides, sulfur dioxide, hydrofluoric acid, and fluorine gas. This environmental and health effects as well as global emission of SF6 gas are considered a threat to humans and the climate, where modern disposal methods of contaminated SF6 gas and its by-products should replace the conventional approaches. Relevant government policies on the safety and disposal concern of SF6 gas are reviewed and challenges and further research directions for the disposal of SF6 gas are highlighted in this review article.
  2. Chew KW, Chia SR, Show PL, Ling TC, Arya SS, Chang JS
    Bioresour Technol, 2018 Nov;267:356-362.
    PMID: 30029182 DOI: 10.1016/j.biortech.2018.07.069
    The present study investigates the prospective of substituting inorganic medium with organic food waste compost medium as a nutrient supplement for the cultivation of Chlorella vulgaris FSP-E. Various percentages of compost mixtures were replaced in the inorganic medium to compare the algal growth and biochemical composition. The use of 25% compost mixture combination was found to yield higher biomass concentration (11.1%) and better lipid (10.1%) and protein (2.0%) content compared with microalgae cultivation in fully inorganic medium. These results exhibited the potential of combining the inorganic medium with organic food waste compost medium as an effective way to reduce the cultivation cost of microalgae and to increase the biochemical content in the cultivated microalgae.
  3. Chia SR, Chew KW, Show PL, Yap YJ, Ong HC, Ling TC, et al.
    Biotechnol J, 2018 Jun;13(6):e1700618.
    PMID: 29356369 DOI: 10.1002/biot.201700618
    Microalgae are considered promising feedstock for the production of biofuels and other bioactive compounds, yet there are still challenges on commercial applications of microalgae-based products. This review focuses on the economic analysis, environmental impact, and industrial potential of biofuels production from microalgae. The cost of biofuels production remains higher compared to conventional fuel sources. However, integration of biorefinery pathways with biofuels production for the recovery of value-added products (such as antioxidants, natural dyes, cosmetics, nutritional supplements, polyunsaturated fatty acids, and so forth) could substantially reduce the production costs. It also paves the way for sustainable energy resources by significantly reducing the emissions of CO2 , NOx , SOx , and heavy metals. Large-scale biofuels production has yet to be successfully commercialized with many roadblocks ahead and heavy competition with conventional fuel feedstock as well as technological aspects. One of the prominent challenges is to develop a cost-effective method to achieve high-density microalgal cultivation on an industrial scale. The biofuels industry should be boosted by Government's support in the form of subsidies and incentives, for addressing the pressing climate change issues, achieving sustainability, and energy security.
  4. Fayyaz M, Chew KW, Show PL, Ling TC, Ng IS, Chang JS
    Biotechnol Adv, 2020 11 01;43:107554.
    PMID: 32437732 DOI: 10.1016/j.biotechadv.2020.107554
    Microalgae-based bioproducts are in limelight because of their promising future, novel characteristics, the current situation of population needs, and rising prices of rapidly depleting energy resources. Algae-based products are considered as clean sustainable energy and food resources. At present, they are not commercialized due to their high production cost and low yield. In recent years, novel genome editing tools like RNAi, ZNFs, TALENs, and CRISPR/Cas9 are used to enhance the quality and quantity of the desired products. Genetic and metabolic engineering are frequently applied because of their rapid and precise results than random mutagenesis. Omic approaches help enhance biorefinery capabilities and are now in the developing stage for algae. The future is very bright for transgenic algae with increased biomass yield, carbon dioxide uptake rate, accumulating high-value compounds, reduction in cultivation, and production costs, thus reaching the goal in the global algal market and capital flow. However, microalgae are primary producers and any harmful exposure to the wild strains can affect the entire ecosystem. Therefore, strict regulation and monitoring are required to assess the potential risks before introducing genetically modified microalgae into the natural ecosystem.
  5. Qian Y, Bian L, Wang K, Chia WY, Khoo KS, Zhang C, et al.
    Chemosphere, 2021 Mar;266:128948.
    PMID: 33220979 DOI: 10.1016/j.chemosphere.2020.128948
    In this study, to improve the mechanical and thermal properties of curdlan film, a curdlan/nanocellulose (NC) blended film was prepared and characterized for the first time. NC was successfully prepared from microcrystalline cellulose (MCC) with NaOH/urea treatment. The particle size of NC was observed to be 70-140 nm by cryo-electron microscope (cryo-EM). The blended film was prepared by adding the NC to curdlan solution. The tensile strength (TS) of the blended film reached the maximum value of 38.6 MPa, and the elongation at break (EB) was 40%. The DSC curve showed that the heat absorption peak of the film was 240 °C, indicating that the blended film has good temperature stability. Additionally, some other film properties were also improved, including gas barrier properties and transparency. Obvious morphological and molecular differences between the blended film and the pure curdlan film were discovered by SEM and FTIR analysis. Finally, the blended film was used for the preservation of chilled meat and extended the storage time of meat to 12 days. These results provided a theoretical basis for future application and development of biodegradable film.
  6. Khoo KS, Chew KW, Ooi CW, Ong HC, Ling TC, Show PL
    Bioresour Technol, 2019 Oct;290:121794.
    PMID: 31319214 DOI: 10.1016/j.biortech.2019.121794
    This work aimed to study the application of liquid biphasic flotation (LBF) for the efficient and rapid recovery of astaxanthin from H. pluvialis microalgae. The performance of LBF for the extraction of astaxanthin was studied comprehensively under different operating conditions, including types and concentrations of food-grade alcohol and salt, volume ratio, addition of neutral salt, flotation period, and mass of dried H. pluvialis biomass powder. The maximum recovery, extraction efficiency and partition coefficient of astaxanthin obtained from the optimum LBF system were 95.11 ± 1.35%, 99.84 ± 0.05% and 385.16 ± 3.87, respectively. A scaled-up LBF system was also performed, demonstrating the feasibility of extracting natural astaxanthin from microalgae at a larger scale. This exploration of LBF system opens a promising avenue to the extraction of astaxanthin at lower cost and shorter processing time.
  7. Chia SR, Mak KY, Khaw YJ, Suhaidi N, Chew KW, Show PL
    Bioresour Technol, 2019 Dec;294:122158.
    PMID: 31550634 DOI: 10.1016/j.biortech.2019.122158
    Microalgae are rich in valuable biomolecules and grow on non-arable land with rapid growth rate, which has a host of new possibility as alternative protein sources. In the present study, extraction of proteins from Chlorella vulgaris via an efficient technique, Liquid Triphasic Flotation (LTF) system, was studied. The optimized conditions in LTF system were 70% v/v of t-butanol, 40% w/v of salt solution, 0.5% w/v of biomass, pH 5.54, 1:1 of salt to t-butanol solution, and 10 min of air flotation time to attain 87.23% of protein recovery and 56.72% of separation efficiency. Besides, the study on recycling t-butanol has demonstrated that only one run was sufficient to maintain the performance of system. The efficiency of LTF in extracting protein has performed better than just Three Phase Partitioning (TPP) system. LTF system is hence an effective protein extraction and purification method with minimum operation unit and processing time.
  8. Chew KW, Chia SR, Chia WY, Cheah WY, Munawaroh HSH, Ong WJ
    Environ Pollut, 2021 Mar 01;278:116836.
    PMID: 33689952 DOI: 10.1016/j.envpol.2021.116836
    The remarkable journey of progression of mankind has created various impacts in the form of polluted environment, amassed heavy metals and depleting resources. This alarming situation demands sustainable energy resources and approaches to deal with these environmental hazards and power deficit. Pyrolysis and co-pyrolysis address both energy and environmental issues caused by civilization and industrialization. The processes use hazardous waste materials including waste tires, plastic and medical waste, and biomass waste such as livestock waste and agricultural waste as feedstock to produce gas, char and pyrolysis oil for energy production. Usage of hazardous materials as pyrolysis and co-pyrolysis feedstock reduces disposal of harmful substances into environment, reducing occurrence of soil and water pollution, and substituting the non-renewable feedstock, fossil fuels. As compared to combustion, pyrolysis and co-pyrolysis have less emission of air pollutants and act as alternative options to landfill disposal and incineration for hazardous materials and biomass waste. Hence, stabilizing heavy metals and solving the energy and waste management problems. This review discusses the pyrolysis and co-pyrolysis of biomass and harmful wastes to strive towards circular economy and eco-friendly, cleaner energy with minimum waste disposal, reducing negative impact on the planet and creating future possibilities.
  9. Tan JS, Lee SY, Chew KW, Lam MK, Lim JW, Ho SH, et al.
    Bioengineered, 2020 12;11(1):116-129.
    PMID: 31909681 DOI: 10.1080/21655979.2020.1711626
    The richness of high-value bio-compounds derived from microalgae has made microalgae a promising and sustainable source of useful product. The present work starts with a review on the usage of open pond and photobioreactor in culturing various microalgae strains, followed by an in-depth evaluation on the common harvesting techniques used to collect microalgae from culture medium. The harvesting methods discussed include filtration, centrifugation, flocculation, and flotation. Additionally, the advanced extraction technologies using ionic liquids as extractive solvents applied to extract high-value bio-compounds such as lipids, carbohydrates, proteins, and other bioactive compounds from microalgae biomass are summarized and discussed. However, more work needs to be done to fully utilize the potential of microalgae biomass for the application in large-scale production of biofuels, food additives, and nutritive supplements.
  10. Khoo KS, Ooi CW, Chew KW, Foo SC, Show PL
    Bioresour Technol, 2021 Feb;322:124520.
    PMID: 33348114 DOI: 10.1016/j.biortech.2020.124520
    Ionic liquids (ILs) have emerged as an alternative solvent used in the bioprocessing of microalgae for recovery of valuable biomolecules. The aim of this work is to extract fucoxanthin from Chaetoceros calcitrants (C. calcitrans) by using the readily distillable CO2-based alkyl carbamate ILs. The degree of cell permeabilization was analysed by the quantification of extracted fucoxanthin and the analyses of cell surface morphology. Among the tested CO2-based alkyl carbamate ILs, diallylammonium diallylcarbamate (DACARB) extraction system gave the maximal yield of fucoxanthin at 17.51 mg/g under the optimal extraction conditions [90% (v/v), 3 min and 25 °C]. Moreover, the extracted fucoxanthin fraction exhibited the satisfactory antioxidant activities. The recyclability of DACARB was demonstrated in the multiple batches of fucoxanthin extraction. Hence, CO2-based alkyl carbamate ILs can prospectively substitute conventional organic solvents in the downstream processing of bioactive compounds from microalgae.
  11. Yong JJJY, Chew KW, Khoo KS, Show PL, Chang JS
    Biotechnol Adv, 2020 12 30;47:107684.
    PMID: 33387639 DOI: 10.1016/j.biotechadv.2020.107684
    The coexistence of algae and bacteria in nature dates back to the very early stages when life came into existence. The interaction between algae and bacteria plays an important role in the planet ecology, cycling nutrients, and feeding higher trophic levels, and have been evolving ever since. The emerging concept of algal-bacterial consortia is gaining attention, much towards environmental management and protection. Studies have shown that algal-bacterial synergy does not only promote carbon capture in wastewater bioremediation but also consequently produces biofuels from algal-bacterial biomass. This review has evaluated the optimistic prospects of algal-bacterial consortia in environmental remediation, biorefinery, carbon sequestration as well as its contribution to the production of high-value compounds. In addition, algal-bacterial consortia offer great potential in bloom control, dye removal, agricultural biofertilizers, and bioplastics production. This work also emphasizes the advancement of algal-bacterial biotechnology in environmental management through the incorporation of Industry Revolution 4.0 technologies. The challenges include its pathway to greener industry, competition with other food additive sources, societal acceptance, cost feasibility, environmental trade-off, safety and compatibility. Thus, there is a need for further in-depth research to ensure the environmental sustainability and feasibility of algal-bacterial consortia to meet numerous current and future needs of society in the long run.
  12. Chia WY, Kok H, Chew KW, Low SS, Show PL
    Bioengineered, 2021 12;12(1):1226-1237.
    PMID: 33858291 DOI: 10.1080/21655979.2021.1910432
    The world at large is facing a new threat with the emergence of the Coronavirus Disease 2019 (COVID-19) pandemic. Though imperceptible by the naked eye, the medical, sociological and economical implications caused by this newly discovered virus have been and will continue to be a great impediment to our lives. This health threat has already caused over two million deaths worldwide in the span of a year and its mortality rate is projected to continue rising. In this review, the potential of algae in combating the spread of COVID-19 is investigated since algal compounds have been tested against viruses and algal anti-inflammatory compounds have the potential to treat the severe symptoms of COVID-19. The possible utilization of algae in producing value-added products such as serological test kits, vaccines, and supplements that would either mitigate or hinder the continued health risks caused by the virus is prominent. Many of the characteristics in algae can provide insights on the development of microalgae to fight against SARS-CoV-2 or other viruses and contribute in manufacturing various green and high-value products.
  13. Yew GY, Chew KW, Malek MA, Ho YC, Chen WH, Ling TC, et al.
    Biotechnol Biofuels, 2019;12:252.
    PMID: 31666807 DOI: 10.1186/s13068-019-1591-8
    Background: The extraction of lipids from microalgae requires a pretreatment process to break the cell wall and subsequent extraction processes to obtain the lipids for biofuels production. The multistep operation tends to incur high costs and are energy intensive due to longer process operations. This research work applies the combination of radicals from hydrogen peroxide with an organic solvent as a chemical pretreatment method for disrupting the cell wall of microalgae and simultaneously extracting lipids from the biomass in a one-step biphasic solution.

    Result: Several parameters which can affect the biphasic system were analyzed: contact time, volume of solvent, volume ratio, type of organic solvent, biomass amount and concentration of solvents, to extract the highest amount of lipids from microalgae. The results were optimized and up to 83.5% of lipid recovery yield and 94.6% of enhancement was successfully achieved. The results obtain from GC-FID were similar to the analysis of triglyceride lipid standard.

    Conclusion: The profound hybrid biphasic system shows great potential to radically disrupt the cell wall of microalgae and instantaneously extract lipids in a single-step approach. The lipids extracted were tested to for its comparability to biodiesel performance.

  14. Chew KW, Chia SR, Krishnamoorthy R, Tao Y, Chu DT, Show PL
    Bioresour Technol, 2019 Sep;288:121519.
    PMID: 31128541 DOI: 10.1016/j.biortech.2019.121519
    Liquid biphasic flotation (LBF), an integrated process of liquid biphasic system (LBS) and adsorptive bubbles flotation, was used for the purification of C-phycocyanin from S. platensis microalgae. Various experimental parameters such as type of phase forming polymer and salt, concentration of phase forming components, system pH, volume ratio, air flotation time and crude extract concentration were evaluated to maximise the C-phycocyanin recovery yield and purity. The optimal conditions for the LBF system achieving C-phycocyanin purification fold of 3.49 compared to 2.43 from the initial LBF conditions was in polyethylene glycol (PEG) 4000 and potassium phosphate combination, with 250 g/L of polymer and salt concentration each, volume ratio of 1:0.85, system pH of 7.0, air flotation duration of 7 min and phycocyanin crude extract concentration of 0.625 %w/w. The LBF has effectively enhanced the purification of C-phycocyanin in a cost effective and simple processing.
  15. Tang DYY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL
    Bioresour Technol, 2020 May;304:122997.
    PMID: 32094007 DOI: 10.1016/j.biortech.2020.122997
    Microalgae are autotroph organisms that utilise light energy to synthesize various high-value bioactive compounds such as polysaccharides, proteins and lipids. Due to its fast growth rate and capability to survive in harsh environment, microalgae nowadays are applied in various industrial areas. The process of obtaining microalgae-based biomolecules starts with the selection of suitable microalgae strain, cultivation, followed by downstream processing of the biomass (i.e., pre-treatment, harvesting, extraction and purification). The end products of the processes are biofuels and other valuable bioproducts. Nevertheless, low production yield and high-cost downstream processes are the emerging bottlenecks which need to be addressed in the upscaling of extracted compounds from microalgae biomass. To conclude, tremendous efforts are required to overcome these challenges to revolutionize microalgae into a novel and green factory of different bioactive compounds for industrial necessities to satisfy and fulfil global demands.
  16. Khoo KS, Chew KW, Yew GY, Leong WH, Chai YH, Show PL, et al.
    Bioresour Technol, 2020 May;304:122996.
    PMID: 32115347 DOI: 10.1016/j.biortech.2020.122996
    The world energy system faces two major challenges: the requirement for more energy and less carbon. It is important to address biofuels production as an alternative to the usage of fossil fuel by utilizing microalgae as the potential feedstock. Yet, the commercialization of microalgae remains contentious caused by factors relating to the life cycle assessment and feasibility of microalgae-based biofuels. This present review starts with an introduction to the benefits of microalgae, followed by intensive elaboration on microalgae cultivation parameters. Subsequently, the fundamental principle along with the advantages and disadvantages of various pretreatment techniques of microalgae were reviewed. In addition, the conventional and recent advances in lipid extraction techniques from microalgae were comprehensively evaluated. Comparative analysis regard to the gaps from previous studies was discussed point-by-point in each section. The effort presented in this review will provide an insight for future researches dealing with microalgae-biofuel production on downstream processing.
  17. Chia SR, Chew KW, Zaid HFM, Chu DT, Tao Y, Show PL
    PMID: 31867321 DOI: 10.3389/fbioe.2019.00396
    Green microalgae containing various bioactive compounds and macronutrients such as lipids, carbohydrates, and proteins, have attracted much attention from the global community. Microalgae has the potential to be applied in food industries due to its high protein content, rapid growth rate, and ability to survive in harsh conditions. This study presents a simple yet efficient technique of sonication-assisted triphasic partitioning process, also known as ultrasonic-assisted three phase partitioning (UATPP), for the extraction of proteins from Chlorella vulgaris FSP-E. Comparison studies between three phase partitioning (TPP) and UATPP was conducted to investigate the feasibility of the enhanced technique on proteins extraction. Types of salt, ratio of slurry to t-butanol, salt saturation, sonication frequency, power, irradiation time, and duty cycle as well as biomass loading were studied. UATPP was found to be an improved technique compared to TPP. An optimum separation efficiency and yield of 74.59 ± 0.45 and 56.57 ± 3.70% was obtained, respectively, with the optimized conditions: salt saturation (50%), slurry to t-butanol ratio (1:2), sonication power (100%), irradiation time (10 min), frequency (35 kHz), duty cycle (80%) and biomass loading (0.75 wt%). A scaled-up study was performed to validate the reliability of UATPP for protein extraction. The outcome of the study revealed that UATPP is an attractive approach for downstream processing of microalgae.
  18. Khoo KS, Chew KW, Yew GY, Manickam S, Ooi CW, Show PL
    Ultrason Sonochem, 2020 Oct;67:105052.
    PMID: 32278245 DOI: 10.1016/j.ultsonch.2020.105052
    The purpose of this investigation is to evaluate the implementation of ultrasound-assisted liquid biphasic flotation (LBF) system for the recovery of natural astaxanthin from Haematococcus pluvialis microalgae. Various operating conditions of ultrasound-assisted LBF systems such as the position of ultrasound horn, mode of ultrasonication (pulse and continuous), amplitude of ultrasonication, air flowrate, duration of air flotation, and mass of H. pluvialis microalgae were evaluated. The effect of ultrasonication on the cellular morphology of microalgae was also assessed using microscopic analysis. Under the optimized operating conditions of UALBF, the maximum recovery yield, extraction efficiency, and partition coefficient of astaxanthin were 95.08 ± 3.02%, 99.74 ± 0.05%, and 185.09 ± 4.78, respectively. In addition, the successful scale-up operation of ultrasound-assisted LBF system verified the practicability of this integrated approach for an effective extraction of natural astaxanthin.
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links