BACKGROUND: Multiple predictive models of mortality exist for acute-on-chronic liver failure (ACLF) patients that often create confusion during decision-making. We studied the natural history and evaluated the performance of prognostic models in ACLF patients.
METHODS: Prospectively collected data of ACLF patients from APASL-ACLF Research Consortium (AARC) was analyzed for 30-day outcomes. The models evaluated at days 0, 4, and 7 of presentation for 30-day mortality were: AARC (model and score), CLIF-C (ACLF score, and OF score), NACSELD-ACLF (model and binary), SOFA, APACHE-II, MELD, MELD-Lactate, and CTP. Evaluation parameters were discrimination (c-indices), calibration [accuracy, sensitivity, specificity, and positive/negative predictive values (PPV/NPV)], Akaike/Bayesian Information Criteria (AIC/BIC), Nagelkerke-R2, relative prediction errors, and odds ratios.
RESULTS: Thirty-day survival of the cohort (n = 2864) was 64.9% and was lowest for final-AARC-grade-III (32.8%) ACLF. Performance parameters of all models were best at day 7 than at day 4 or day 0 (p 12 had the lowest 30-day survival (5.7%).
CONCLUSIONS: APASL-ACLF is often a progressive disease, and models assessed up to day 7 of presentation reliably predict 30-day mortality. Day-7 AARC model is a statistically robust tool for classifying risk of death and accurately predicting 30-day outcomes with relatively lower prediction errors. Day-7 AARC score > 12 may be used as a futility criterion in APASL-ACLF patients.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.