Affiliations 

  • 1 Department of Chemistry, Government College, University of Faisalabad, Faisalabad, Pakistan
  • 2 Department of Chemistry, University of Okara, Okara, Pakistan
  • 3 Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam, Bandar Puncak Alam, Selangor, Malaysia
  • 4 Department of Chemistry, University of Sahiwal, Sahiwal, Pakistan
J Basic Microbiol, 2021 Nov 01.
PMID: 34724237 DOI: 10.1002/jobm.202100288

Abstract

Naphthamides have pharmacological potential as they express strong activities against microorganisms. The commercially available naphthoyl chloride and 4-bromoaniline were condensed in dry dichloromethane (DCM) in the presence of Et3 N to form N-(4-bromophenyl)-1-naphthamide (86%) (3). Using a Pd(0) catalyzed Suzuki-Miyaura Cross-Coupling reaction of (3) and various boronic acids, a series of N-([1,1'-biaryl]-4-yl)-1-naphthamide derivatives (4a-h) were synthesized in moderate to good yields. The synthesized derivatives were evaluated for cytotoxicity haemolytic assay and biofilm inhibition activity through in silico and in vitro studies. Molecular docking, ADME (absorption, distribution, metabolism, and excretion), toxicity risk, and other cheminformatics predict synthesized molecules as biologically active moieties, further validated through in vitro studies in which compounds (4c) and (4f) showed significant haemolytic activity whereas (4e) exhibited an efficient biofilm inhibition activity against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Bacillus subtilis. When forming biofilms, bacteria become resistant to various antimicrobial treatments. Currently, research is focused on the development of agents that inhibit biofilm formation, thus the present work is valuable for preventing future drug resistance.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

Similar publications