Affiliations 

  • 1 Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety / State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
  • 2 Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety / State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
  • 3 Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, No. 159, Longpan Road, Nanjing, 210037, China
  • 4 Murdoch Applied Innovation Nanotechnology Research Group / Surface Analysis and Materials Engineering Research Group, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 5150, Australia
  • 5 Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Jiangsu Key Laboratory for Food Quality and Safety / State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China. Electronic address: njxuelihong@gmail.com
  • 6 Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
  • 7 Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
Environ Pollut, 2022 Feb 01;294:118598.
PMID: 34861331 DOI: 10.1016/j.envpol.2021.118598

Abstract

Biochar has been considered as a potential tool to mitigate soil ammonia (NH3) volatilization and greenhouse gases (GHGs) emissions in recent years. However, the aging effect of biochar on soils remains elusive, which introduces uncertainty on the effectiveness of biochar to mitigate global warming in a long term. Here, a meta-analysis of 22 published works of literature with 217 observations was conducted to systematically explore the aging effect of biochar on soil NH3 and GHGs emissions. The results show that, in comparison with the fresh biochar, the aging makes biochar more effective to decrease soil NH3 volatilization by 7% and less risk to contribute CH4 emissions by 11%. However, the mitigation effect of biochar on soil N2O emissions is decreased by 15% due to aging. Additionally, aging leads to a promotion effect on soil CO2 emissions by 25% than fresh biochar. Our findings suggest that along with aging, particularly the effect of artificial aging, biochar could further benefit the alleviation of soil NH3 volatilization, whereas its potential role to mitigate global warming may decrease. This study provides a systematic assessment of the aging effect of biochar to mitigate soil NH3 and GHGs, which can provide a scientific basis for the sustainable green development of biochar application.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.