Displaying publications 1 - 20 of 542 in total

Abstract:
Sort:
  1. Osman M, Samsudin NS, Faruq G, Nezhadahmadi A
    ScientificWorldJournal, 2013;2013:940201.
    PMID: 24470797 DOI: 10.1155/2013/940201
    Stevia rebaudiana Bertoni is a member of Compositae family. Stevia plant has zero calorie content and its leaves are estimated to be 300 times sweeter than sugar. This plant is believed to be the most ideal substitute for sugar and important to assist in medicinal value especially for diabetic patients. In this study, microcutting techniques using a mist-chamber propagation box were used as it was beneficial for propagation of Stevia and gave genetic uniformity to the plant. The effects of different treatments on root stimulation of Stevia in microcuttings technique were evaluated. Treatments studied were different sizes of shoot cuttings, plant growth regulators, lights, and shades. Data logger was used to record the mean value of humidity (>90% RH), light intensity (673-2045 lx), and temperature (28.6-30.1°C) inside the mist-chamber propagation box. From analysis of variance, there were significant differences between varieties and treatments in parameters studied (P < 0.05). For the size of shoot cuttings treatment, 6 nodes cuttings were observed to increase root number. As compared to control, shoot cuttings treated with indole butyric acid (IBA) had better performance regarding root length. Yellow light and 50% shade treatments showed higher root and leaf number and these conditions can be considered as crucial for potential propagation of Stevia.
    Matched MeSH terms: Agriculture*
  2. Samia Amin, Sayed Mahmud Saiful Amin
    MyJurnal
    Meta-analysis is a subset of systematic review; a technique for systematically combining pertinent qualitative
    and quantitative study data from numerous selected studies to broaden a single conclusion that has more
    statistical power. This inference is statistically stronger than the analysis of any single study, due to increase
    numbers of topics, greater variety amongst subjects, or collected effects and outcomes. The aim of this review
    article is to highlight the definition, history, purpose, characteristics, use, advantage, disadvantage, validity,
    and steps in conducting meta-analysis.
    Matched MeSH terms: Agriculture
  3. Fauzi NIM, Fen YW, Omar NAS, Hashim HS
    Sensors (Basel), 2021 Jun 03;21(11).
    PMID: 34204853 DOI: 10.3390/s21113856
    Insecticides are enormously important to industry requirements and market demands in agriculture. Despite their usefulness, these insecticides can pose a dangerous risk to the safety of food, environment and all living things through various mechanisms of action. Concern about the environmental impact of repeated use of insecticides has prompted many researchers to develop rapid, economical, uncomplicated and user-friendly analytical method for the detection of insecticides. In this regards, optical sensors are considered as favorable methods for insecticides analysis because of their special features including rapid detection time, low cost, easy to use and high selectivity and sensitivity. In this review, current progresses of incorporation between recognition elements and optical sensors for insecticide detection are discussed and evaluated well, by categorizing it based on insecticide chemical classes, including the range of detection and limit of detection. Additionally, this review aims to provide powerful insights to researchers for the future development of optical sensors in the detection of insecticides.
    Matched MeSH terms: Agriculture
  4. Pérez-Pons ME, Alonso RS, García O, Marreiros G, Corchado JM
    Sensors (Basel), 2021 Aug 04;21(16).
    PMID: 34450717 DOI: 10.3390/s21165276
    Yearly population growth will lead to a significant increase in agricultural production in the coming years. Twenty-first century agricultural producers will be facing the challenge of achieving food security and efficiency. This must be achieved while ensuring sustainable agricultural systems and overcoming the problems posed by climate change, depletion of water resources, and the potential for increased erosion and loss of productivity due to extreme weather conditions. Those environmental consequences will directly affect the price setting process. In view of the price oscillations and the lack of transparent information for buyers, a multi-agent system (MAS) is presented in this article. It supports the making of decisions in the purchase of sustainable agricultural products. The proposed MAS consists of a system that supports decision-making when choosing a supplier on the basis of certain preference-based parameters aimed at measuring the sustainability of a supplier and a deep Q-learning agent for agricultural future market price forecast. Therefore, different agri-environmental indicators (AEIs) have been considered, as well as the use of edge computing technologies to reduce costs of data transfer to the cloud. The presented MAS combines price setting optimizations and user preferences in regards to accessing, filtering, and integrating information. The agents filter and fuse information relevant to a user according to supplier attributes and a dynamic environment. The results presented in this paper allow a user to choose the supplier that best suits their preferences as well as to gain insight on agricultural future markets price oscillations through a deep Q-learning agent.
    Matched MeSH terms: Agriculture*
  5. Sarlaki E, Kermani AM, Kianmehr MH, Asefpour Vakilian K, Hosseinzadeh-Bandbafha H, Ma NL, et al.
    Environ Pollut, 2021 Sep 15;285:117412.
    PMID: 34051566 DOI: 10.1016/j.envpol.2021.117412
    The use of agro-biowaste compost fertilizers in agriculture is beneficial from technical, financial, and environmental perspectives. Nevertheless, the physical, mechanical, and agronomical attributes of agro-biowaste compost fertilizers should be engineered to reduce their storage, handling, and utilization costs and environmental impacts. Pelletizing and drying are promising techniques to achieve these goals. In the present work, the effects of process parameters, including compost particle size/moisture content, pelletizing compression ratio, and drying air temperature/velocity, were investigated on the density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet. The Taguchi technique was applied to understand the effects of independent parameters on the output responses, while the optimal pellet properties were found using the iterative thresholding method. The soil and plant (sweet basil) response to the optimal biocompost pellet was experimentally evaluated. The farm application of the optimal pellet was also compared with the untreated agro-biowaste compost using the life cycle assessment approach to investigate the potential environmental impact mitigation of the pelletizing and drying processes. Generally, the compost moisture content was the most influential factor on the density and specific crushing energy of the dried pellet, while the moisture diffusion of the wet pellet during the drying process was significantly influenced by the pelletizing compression ratio. The density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet at the optimal conditions were 1242.49 kg/m3, 0.5054 MJ/t, and 8.2 × 10-8 m2/s, respectively. The optimal biocompost pellet could release 80% of its nitrogen content evenly over 98 days, while this value was 28 days for the chemical urea fertilizer. Besides, the optimal pellet could significantly improve the agronomical attributes of the sweet basil plant compared with the untreated biocompost. The applied strategy could collectively mitigate the weighted environmental impact of farm application of the agro-biowaste compost by more than 63%. This reduction could be attributed to the fact that the pelletizing-drying processes could avoid methane emissions from the untreated agro-biowaste compost during the farm application. Overall, pelletizing-drying of the agro-biowaste compost could be regarded as a promising strategy to improve the environmental and agronomical performance of farm application of organic biofertilizers.
    Matched MeSH terms: Agriculture
  6. Al-Mashreki MH, Akhir JB, Abd Rahim S, Desa KM, Rahman ZA
    Pak J Biol Sci, 2010 Dec 01;13(23):1116-28.
    PMID: 21313888
    In the present study, an assessment of land suitability potential for agriculture in the study area of IBB governorate, Republic of Yemen has been conducted through close examination of the indicators of land characteristics and qualities. The objective of this study is to evaluate the available land resource and produce the potential map of the study area. Remote sensing data help in mapping land resources, especially in mountainous areas where accessibility is limited. Satellite imagery data used for this study includes data from multi-temporal Landsat TM which dated June 2001. The parameters taken into consideration were 16 thematic maps i.e., slope, DEM, rainfall, soil, land use, land degradation as well as land characteristics maps. Satellite image of the study area has been classified for land use, land degradation and soil maps preparation, while topo sheet and ancillary data have been used for slope and DEM maps and soil properties determination. The land potential of the study area was categorized as very high, high, moderate, low and very low by adopting the logical criteria. These categories were arrived at by integrating the various layers with corresponding weights in a Geographical Information System (GIS). The study demonstrates that the study area can be categorized into spatially distributed agriculture potential zones based on the soil properties, terrain characteristics and analyzing present land use. This approach has the potential as a useful tool for guiding policy decision on sustainable land resource management.
    Matched MeSH terms: Agriculture*
  7. Wijedasa LS, Page SE, Evans CD, Osaki M
    Science, 2016 11 04;354(6312):562.
    PMID: 27811262
    Matched MeSH terms: Agriculture*
  8. Khalid AAH, Yaakob Z, Abdullah SRS, Takriff MS
    Bioresour Technol, 2018 Jan;247:930-939.
    PMID: 30060432 DOI: 10.1016/j.biortech.2017.09.195
    This study investigated acclimation ability of native Chlorella sorokiniana (CS-N) and commercial Chlorella sorokiniana (CS-C) in palm oil mill effluent (POME), their metabolic profile and feasibility of effluent recycling for dilution purpose. Maximum specific growth rate, µmax and lag time, λ of the microalgae were evaluated. Result shows both strains produced comparable growth in POME, with µmax of 0.31 day-1 and 0.30 day-1 respectively, albeit longer λ by the CS-C. However, three cycles of acclimation was able to reduce λ from eight days to two days for CS-C. Metabolic profiling using principal component analysis (PCA) shows clear cluster of acclimatized strains to suggest better stress tolerance of CS-N. Finally, a remarkable µmax of 0.57 day-1 without lag phase was achieved using acclimatized CS-N in 40% POME concentration. Acclimation has successfully shortened the λ and dilution with final effluent was proved to be feasible for further improvement of the microalgae growth.
    Matched MeSH terms: Agriculture*
  9. Yeoh KH, Shafie SA, Al-Attab KA, Zainal ZA
    Bioresour Technol, 2018 Oct;265:365-371.
    PMID: 29925052 DOI: 10.1016/j.biortech.2018.06.024
    In this study, three different methods for high quality solid fuel production were tested and compared experimentally. Oil palm empty fruit bunches, mesocarp fibers, palm kernel shells and rubber seeds shells were treated using thermal (TC), hydrothermal (HTC) and vapothermal (VTC) carbonization. All thermochemical methods were accomplished by using a custom made batch-type reactor. Utilization of novel single reactor equipped with suspended internal container provided efficient operation since both steam generator and raw materials were placed inside the same reactor. Highest energy densification was achieved by VTC process followed by TC and HTC processes. The heating value enhancement in VTC and TC was achieved by the increase in fixed carbon content and reduction in volatile matter. The formation of the spherical components in HTC hydrochar which gave a sharp peak at 340 °C in the DTG curves was suggested as the reason that led to the increment in energy content.
    Matched MeSH terms: Agriculture*
  10. Sarkar MSK, Begum RA, Pereira JJ
    Environ Sci Pollut Res Int, 2020 Mar;27(9):9760-9770.
    PMID: 31925690 DOI: 10.1007/s11356-020-07601-1
    Studies reveal that climate change (CC) has higher negative impacts on agricultural production than positive impacts. Therefore, this article attempts to explore the impacts of CC on oil palm production in Malaysia and provides mitigation and adaptation strategies towards reducing such impacts. The multiple regression analysis is applied to assess the impacts of CC on oil palm production by using time series data in the period of 1980 to 2010. A negative and significant relationship is found between annual average temperature and oil palm production. If temperature rises by 1 °C, 2 °C, 3 °C, and 4 °C, production of oil palm can decrease from a range of 10 to 41%. This article has also found a negative impact of sea level rise (SLR) on oil palm production. Findings reveal that if areas under oil palm production decrease by 2%, 4%, and 8% due to SLR of 0.5, 1, and 2 m, oil palm production can decrease by 1.98%, 3.96%, and 7.92%, respectively, indicating that CC has a significant impact on the reduction of oil palm production in Malaysia, ultimately affecting the sustainability of oil palm sector in Malaysia. Finally, this study suggests to practice appropriate mitigation and adaptation strategies, including promotion and development of climate resilient varieties, soil and water conservation, afforestation, insurance and other risk transfer mechanisms, emission reduction technology, protection of coastal flooding for reducing the impacts of CC on oil palm production.
    Matched MeSH terms: Agriculture*
  11. Ahmed F, Al-Amin AQ, Masud MM, Kari F, Mohamad Z
    An. Acad. Bras. Cienc., 2015 Sep;87(3):1887-902.
    PMID: 26221988 DOI: 10.1590/0001-3765201520130368
    The significance of Science Framework (SF) to date is receiving more acceptances all over the world to address agricultural sustainability. The professional views, however, advocate that the SF known as Mega Science Framework (MSF) in the transitional economies is not converging effectively in many ways for the agricultural sustainability. Specially, MSF in transitional economies is mostly incapable to identify barriers in agricultural research, inadequate to frame policy gaps with the goal of strategizing the desired sustainability in agricultural technology and innovation, inconsistent in finding to identify the inequities, and incompleteness to rebuild decisions. Therefore, this study critically evaluates the components of MSF in transitional economies and appraises the significance, dispute and illegitimate issue to achieve successful sustainable development. A sound and an effective MSF can be developed when there is an inter-linkage within principal components such as of (a) national priorities, (b) specific research on agricultural sustainability, (c) adequate agricultural research and innovation, and (d) alternative policy alteration. This maiden piece of research which is first its kind has been conducted in order to outline the policy direction to have an effective science framework for agricultural sustainability.
    Matched MeSH terms: Agriculture/methods; Agriculture/trends*
  12. Shaffril HAM, Krauss SE, Samsuddin SF
    Sci Total Environ, 2018 Dec 10;644:683-695.
    PMID: 29990916 DOI: 10.1016/j.scitotenv.2018.06.349
    Climate change in Asia is affecting farmers' daily routines. Much of the focus surrounding climate change has targeted the economic and environmental repercussions on farming. Few systematic reviews have been carried out on the social impacts of climate change among farmers in Asia. The present article set out to analyse the existing literature on Asian farmers' adaptation practices towards the impacts of climate change. Guided by the PRISMA Statement (Preferred Reporting Items for Systematic reviews and Meta-Analyses) review method, a systematic review of the Scopus and Web of Science databases identified 38 related studies. Further review of these articles resulted in six main themes - crop management, irrigation and water management, farm management, financial management, physical infrastructure management and social activities. These six themes further produced a total of 35 sub-themes. Several recommendations are highlighted related to conducting more qualitative studies, to have specific and a standard systematic review method for guide research synthesis in context of climate change adaptation and to practice complimentary searching techniques such as citation tracking, reference searching, snowballing and contacting experts.
    Matched MeSH terms: Agriculture/methods*; Agriculture/trends
  13. Aslani F, Bagheri S, Muhd Julkapli N, Juraimi AS, Hashemi FS, Baghdadi A
    ScientificWorldJournal, 2014;2014:641759.
    PMID: 25202734 DOI: 10.1155/2014/641759
    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.
    Matched MeSH terms: Agriculture
  14. Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen WH, et al.
    Bioresour Technol, 2017 Dec;246:2-11.
    PMID: 28844690 DOI: 10.1016/j.biortech.2017.08.009
    Algal biomass is known as a promising sustainable feedstock for the production of biofuels and other valuable products. However, since last decade, massive amount of interests have turned to converting algal biomass into biochar. Due to their high nutrient content and ion-exchange capacity, algal biochars can be used as soil amendment for agriculture purposes or adsorbents in wastewater treatment for the removal of organic or inorganic pollutants. This review describes the conventional (e.g., slow and microwave-assisted pyrolysis) and newly developed (e.g., hydrothermal carbonization and torrefaction) methods used for the synthesis of algae-based biochars. The characterization of algal biochar and a comparison between algal biochar with biochar produced from other feedstocks are also presented. This review aims to provide updated information on the development of algal biochar in terms of the production methods and the characterization of its physical and chemical properties to justify and to expand their potential applications.
    Matched MeSH terms: Agriculture
  15. Ojonubah, James Omaiye, Mohd Hafiz Mohd
    MyJurnal
    Interactions between multispecies are usual incidence in their habitats. Such interactions among the species are thought to be asymmetric in nature, which combine with environmental factors can determine the distributions and abundances of the species. Most often, each species responds differentially to biotic interactions and environmental factors. Therefore, predicting the presence-absence of species is a major challenge in ecology. In this paper, we used mathematical modelling to study the combined effects of biotic interactions (i.e. asymmetric competition) and environmental factors on the presence-absence of the species across a geographical region. To gain better insight on this problem, we performed invasion and numerical simulation analyses of the model of multispecies competitive dynamics. Different threshold values of competition coefficients were observed, which result in different phenomena; such as coexistence of species and priority effects. Consequently, we propose that asymmetric biotic interactions, combined with environmental factors can allow coexistence of relatively weak and strong species at the same location x.
    Matched MeSH terms: Agriculture
  16. Snaddon JL, Willis KJ, Macdonald DW
    Nature, 2013 Oct 10;502(7470):170-1.
    PMID: 24108039 DOI: 10.1038/502170d
    Matched MeSH terms: Agriculture*
  17. Singh H
    Asia Pac J Public Health, 2001;13(2):122-7.
    PMID: 12597510
    The anthropogenic disturbance of pristine natural areas caused by land use and transformation from one use to another as a result of increased pressure from demographic changes and the economics of this shrinking resource can result in adverse health hazards for the community. This paper appraises the consequential impact of land use dynamics, its assessment and measures required to assuage this overlooked public health issue. The anthropogenic impact from land use in Malaysia from the industrial sector alone points toward the potential capacity to cause adverse health hazards. A deficiency in assessing this impact due to limited information has resulted in the inability to establish the extent of this problem. Several necessary measures to establish the extent of the problem involving ways to characterise contaminated land and the evolution of a strategy to resolve it are discussed.
    Matched MeSH terms: Agriculture/methods
  18. Dalu T, Wasserman RJ, Dalu MT
    Glob Chang Biol, 2017 03;23(3):983-985.
    PMID: 27869348 DOI: 10.1111/gcb.13549
    Ephemeral wetlands in arid regions are often degraded or destroyed through poor land-use practice long before they are ever studied or prioritized for conservation. Climate change will likely also have implications for these ecosystems given forecast changes in rainfall patterns in many arid environments. Here, we present a conceptual diagram showing typical and modified ephemeral wetlands in agricultural landscapes and how modification impacts on species diversity and composition.
    Matched MeSH terms: Agriculture*
  19. Ahmed A, Devadason ES, Al-Amin AQ
    Environ Sci Pollut Res Int, 2017 May;24(13):12347-12359.
    PMID: 28357797 DOI: 10.1007/s11356-017-8747-5
    This study accounts for the Hicks neutral technical change in a calibrated model of climate analysis, to identify the optimum level of technical change for addressing climate changes. It demonstrates the reduction to crop damages, the costs to technical change, and the net gains for the adoption of technical change for a climate-sensitive Pakistan economy. The calibrated model assesses the net gains of technical change for the overall economy and at the agriculture-specific level. The study finds that the gains of technical change are overwhelmingly higher than the costs across the agriculture subsectors. The gains and costs following technical change differ substantially for different crops. More importantly, the study finds a cost-effective optimal level of technical change that potentially reduces crop damages to a minimum possible level. The study therefore contends that the climate policy for Pakistan should consider the role of technical change in addressing climate impacts on the agriculture sector.
    Matched MeSH terms: Agriculture/economics
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links