Affiliations 

  • 1 Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran
  • 2 Department of Agrotechnology, College of Abouraihan, University of Tehran, Tehran, Iran
  • 3 Department of Biosystems Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
  • 4 Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
  • 5 Faculty of Science & Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • 6 Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran. Electronic address: maghbashlo@ut.ac.ir
  • 7 Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Biofuel Research Team (BRTeam), Terengganu, Malaysia; Microbial Biotechnology Department, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran. Electronic address: meisam.tabatabaei@umt.edu.my
  • 8 Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia. Electronic address: lam@umt.edu.my
Environ Pollut, 2021 Sep 15;285:117412.
PMID: 34051566 DOI: 10.1016/j.envpol.2021.117412

Abstract

The use of agro-biowaste compost fertilizers in agriculture is beneficial from technical, financial, and environmental perspectives. Nevertheless, the physical, mechanical, and agronomical attributes of agro-biowaste compost fertilizers should be engineered to reduce their storage, handling, and utilization costs and environmental impacts. Pelletizing and drying are promising techniques to achieve these goals. In the present work, the effects of process parameters, including compost particle size/moisture content, pelletizing compression ratio, and drying air temperature/velocity, were investigated on the density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet. The Taguchi technique was applied to understand the effects of independent parameters on the output responses, while the optimal pellet properties were found using the iterative thresholding method. The soil and plant (sweet basil) response to the optimal biocompost pellet was experimentally evaluated. The farm application of the optimal pellet was also compared with the untreated agro-biowaste compost using the life cycle assessment approach to investigate the potential environmental impact mitigation of the pelletizing and drying processes. Generally, the compost moisture content was the most influential factor on the density and specific crushing energy of the dried pellet, while the moisture diffusion of the wet pellet during the drying process was significantly influenced by the pelletizing compression ratio. The density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet at the optimal conditions were 1242.49 kg/m3, 0.5054 MJ/t, and 8.2 × 10-8 m2/s, respectively. The optimal biocompost pellet could release 80% of its nitrogen content evenly over 98 days, while this value was 28 days for the chemical urea fertilizer. Besides, the optimal pellet could significantly improve the agronomical attributes of the sweet basil plant compared with the untreated biocompost. The applied strategy could collectively mitigate the weighted environmental impact of farm application of the agro-biowaste compost by more than 63%. This reduction could be attributed to the fact that the pelletizing-drying processes could avoid methane emissions from the untreated agro-biowaste compost during the farm application. Overall, pelletizing-drying of the agro-biowaste compost could be regarded as a promising strategy to improve the environmental and agronomical performance of farm application of organic biofertilizers.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.