Displaying all 14 publications

Abstract:
Sort:
  1. Hosseinzadeh-Bandbafha H, Tabatabaei M, Aghbashlo M, Sulaiman A, Ghassemi A
    Methods Mol Biol, 2020;1980:121-151.
    PMID: 30838603 DOI: 10.1007/7651_2018_204
    Life-cycle assessment (LCA) is one of the most attractive tools employed nowadays by environmental policy-makers as well as business decision-makers to ensure environmentally sustainable production/consumption of various goods/services. LCA is a systematic, rigorous, and standardized approach aimed at quantifying resources consumed/depleted, pollutants released, and the related environmental and health impacts through the course of consumption and production of goods/service. Algal fuels are no exception and their environmental sustainability could be well scrutinized using the LCA methodology. In line with that, this chapter is devoted to present guidelines on the technical aspects of LCA application in algal fuels while elaborating on major standards used, i.e., ISO 14040 and 14044 standards. Overall, LCA practitioners as well as technical experts dealing with algal fuels in both the public and private sectors could be the main target audience for these guidelines.
  2. Khounani Z, Hosseinzadeh-Bandbafha H, Nazemi F, Shaeifi M, Karimi K, Tabatabaei M, et al.
    J Environ Manage, 2021 Feb 01;279:111822.
    PMID: 33348185 DOI: 10.1016/j.jenvman.2020.111822
    The huge amount of agro-wastes generated due to expanding agricultural activities can potentially cause serious environmental and human health problems. Using the biorefinery concept, all parts of agricultural plants can be converted into multiple value-added bioproducts while reducing waste generation. This approach can be viewed as an effective strategy in developing and realizing a circular bioeconomy by accomplishing the dual goals of waste mitigation and energy recovery. However, the sustainability issue of biorefineries should still be thoroughly scrutinized using comprehensive resource accounting methods such as exergy-based approaches. In light of that, this study aims to conduct a detailed exergy analysis of whole-crop safflower biorefinery consisting of six units, i.e., straw handling, biomass pretreatment, bioethanol production, wastewater treatment, oil extraction, and biodiesel production. The analysis is carried out to find the major exergy sink in the developed biorefinery and discover the bottlenecks for further performance improvements. Overall, the wastewater treatment unit exhibits to be the major exergy sink, amounting to over 70% of the total thermodynamic irreversibility of the process. The biomass pretreatment and bioethanol production units account for 12.4 and 10.3% of the total thermodynamic inefficiencies of the process, respectively. The exergy rates associated with bioethanol, biodiesel, lignin, biogas, liquid digestate, seed cake, sodium sulfate, and glycerol are determined to be 5918.5, 16516.8, 10778.9, 1741.4, 6271.5, 15755.8, 3.4, and 823.5 kW, respectively. The overall exergetic efficiency of the system stands at 72.7%, demonstrating the adequacy of the developed biorefinery from the thermodynamic perspective.
  3. Hosseinzadeh-Bandbafha H, Li C, Chen X, Peng W, Aghbashlo M, Lam SS, et al.
    J Hazard Mater, 2022 02 15;424(Pt C):127636.
    PMID: 34740507 DOI: 10.1016/j.jhazmat.2021.127636
    Waste cooking oil (WCO) is a hazardous waste generated at staggering values globally. WCO disposal into various ecosystems, including soil and water, could result in severe environmental consequences. On the other hand, mismanagement of this hazardous waste could also be translated into the loss of resources given its energy content. Hence, finding cost-effective and eco-friendly alternative pathways for simultaneous management and valorization of WCO, such as conversion into biodiesel, has been widely sought. Due to its low toxicity, high biodegradability, renewability, and the possibility of direct use in diesel engines, biodiesel is a promising alternative to mineral diesel. However, the conventional homogeneous or heterogeneous catalysts used in the biodiesel production process, i.e., transesterification, are generally toxic and derived from non-renewable resources. Therefore, to boost the sustainability features of the process, the development of catalysts derived from renewable waste-oriented resources is of significant importance. In light of the above, the present work aims to review and critically discuss the hazardous WCO application for bioenergy production. Moreover, various waste-oriented catalysts used to valorize this waste are presented and discussed.
  4. Tabatabaei M, Hosseinzadeh-Bandbafha H, Yang Y, Aghbashlo M, Lam SS, Montgomery H, et al.
    J Clean Prod, 2021 Sep 01;313:127880.
    PMID: 34131367 DOI: 10.1016/j.jclepro.2021.127880
    On January 30, 2020, the World Health Organization identified SARS-CoV-2 as a public health emergency of global concern. Accordingly, the demand for personal protective equipment (PPE), including medical face masks, has sharply risen compared with 2019. The new situation has led to a sharp increase in energy demand and the environmental impacts associated with these product systems. Hence, the pandemic's effects on the environmental consequences of various PPE types, such as medical face masks, should be assessed. In light of that, the current study aimed to identify the environmental hot-spots of medical face mask production and consumption by using life cycle assessment (LCA) and tried to provide solutions to mitigate the adverse impacts. Based on the results obtained, in 2020, medical face masks production using fossil-based plastics causes the loss of 2.03 × 103 disability-adjusted life years (DALYs); 1.63 × 108 PDF*m2*yr damage to ecosystem quality; the climate-damaging release of 2.13 × 109 kg CO2eq; and 5.65 × 1010 MJ damage to resources. Besides, annual medical face mask production results in 5.88 × 104 TJ demand for exergy. On the other hand, if used makes are not appropriately handled, they can lead to 4.99 × 105 Pt/yr additional damage to the environment in 2020 as determined by the EDIP 2003. Replacement of fossil-based plastics with bio-based plastics, at rates ranging from 10 to 100%, could mitigate the product's total yearly environmental damage by 4-43%, respectively. Our study calls attention to the environmental sustainability of PPE used to prevent virus transmission in the current and future pandemics.
  5. Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Karimi K, Madadi M, Chisti Y, Peng W, et al.
    Sci Total Environ, 2023 Nov 15;899:165751.
    PMID: 37499830 DOI: 10.1016/j.scitotenv.2023.165751
    Life cycle assessment was used to evaluate the environmental impacts of phytoplanktonic biofuels as possible sustainable alternatives to fossil fuels. Three scenarios were examined for converting planktonic biomass into higher-value commodities and energy streams using the alga Scenedesmus sp. and the cyanobacterium Arthrospira sp. as the species of interest. The first scenario (Sc-1) involved the production of biodiesel and glycerol from the planktonic biomass. In the second scenario (Sc-2), biodiesel and glycerol were generated from the planktonic biomass, and biogas was produced from the residual biomass. The process also involved using a catalyst derived from snail shells for biodiesel production. The third scenario (Sc-3) was similar to Sc-2 but converted CO2 from the biogas upgrading to methanol, which was then used in synthesizing biodiesel. The results indicated that Sc-2 and Sc-3 had a reduced potential (up to 60 % less) for damaging human health compared to Sc-1. Sc-2 and Sc-3 had up to 61 % less environmental impact than Sc-1. Sc-2 and Sc-3 reduced the total cumulative exergy demand by up to 44 % compared to Sc-1. In conclusion, producing chemicals and utilities within the biorefinery could significantly improve environmental sustainability, reduce waste, and diversify revenue streams.
  6. He Y, Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Gupta VK, Peng W, Lam SS, et al.
    Environ Pollut, 2024 Feb 01;342:123081.
    PMID: 38072018 DOI: 10.1016/j.envpol.2023.123081
    E-waste, encompassing discarded materials from outdated electronic equipment, often ends up intermixed with municipal solid waste, leading to improper disposal through burial and incineration. This improper handling releases hazardous substances into water, soil, and air, posing significant risks to ecosystems and human health, ultimately entering the food chain and water supply. Formal e-waste recycling, guided by circular economy models and zero-discharge principles, offers potential solutions to this critical challenge. However, implementing a circular economy for e-waste management due to chemical and energy consumption may cause environmental impacts. Consequently, advanced sustainability assessment tools, such as Life Cycle Assessment (LCA), have been applied to investigate e-waste management strategies. While LCA is a standardized methodology, researchers have employed various routes for environmental assessment of different e-waste management methods. However, to the authors' knowledge, there lacks a comprehensive study focusing on LCA studies to discern the opportunities and limitations of this method in formal e-waste management strategies. Hence, this review aims to survey the existing literature on the LCA of e-waste management under a circular economy, shedding light on the current state of research, identifying research gaps, and proposing future research directions. It first explains various methods of managing e-waste in the circular economy. This review then evaluates and scrutinizes the LCA approach in implementing the circular bioeconomy for e-waste management. Finally, it proposes frameworks and procedures to enhance the applicability of the LCA method to future e-waste management research. The literature on the LCA of e-waste management reveals a wide variation in implementing LCA in formal e-waste management, resulting in diverse results and findings in this field. This paper underscores that LCA can pinpoint the environmental hotspots for various pathways of formal e-waste recycling, particularly focusing on metals. It can help address these concerns and achieve greater sustainability in e-waste recycling, especially in pyrometallurgical and hydrometallurgical pathways. The recovery of high-value metals is more environmentally justified compared to other metals. However, biometallurgical pathways remain limited in terms of environmental studies. Despite the potential for recycling e-waste into plastic or glass, there is a dearth of robust background in LCA studies within this sector. This review concludes that LCA can offer valuable insights for decision-making and policy processes on e-waste management, promoting environmentally sound e-waste recycling practices. However, the accuracy of LCA results in e-waste recycling, owing to data requirements, subjectivity, impact category weighting, and other factors, remains debatable, emphasizing the need for more uncertainty analysis in this field.
  7. Kiehbadroudinezhad M, Merabet A, Al-Durra A, Hosseinzadeh-Bandbafha H, Wright MM, El-Saadany E
    Sci Total Environ, 2024 Feb 20;912:168668.
    PMID: 38007116 DOI: 10.1016/j.scitotenv.2023.168668
    Today, the limited sources of freshwater supply are a significant concern. Exploiting alternative sources, especially seawater, has been the focus, but purifying it is energy-intensive. Integrating desalination with renewable energy is a proposed solution, but it comes with high costs and environmental risks during construction. Hence, this study presents a framework to enhance the modeling, optimization, and evaluation of green water-power cogeneration systems to achieve the sustainability goals of cities and societies. An improved division algorithm (DA) determines the optimal component sizes based on criteria like minimal energy demand, reduced environmental and resource damage, low total life cycle cost (TLCC), and high reliability. Optimization considers varying loss of power supply probability (LPSP) levels (0 %, 2 %, 5 %, and 10 %). The environmental assessment utilizes a life cycle assessment (LCA) approach with IMPACT 2002+ and cumulative energy demand (CED) calculations. The study models the green cogeneration systems based on weather conditions, water demand, and power requirements of Al Lulu Island, Abu Dhabi, UAE. The system comprises photovoltaic panels, wind turbines, tidal generators, and backup systems (fuel cells). Results reveal that TLCC ranges from $186,263 to $486,876 for the highest LPSP. The solar-tidal-based configuration offers the lowest TLCC ($186,263) while substituting solar with wind energy increases TLCC by 160 %. The wind-tidal-based configuration has the lowest specific environmental impact (1020 mPt/yr) and cumulative energy demand (39.06 GJ/yr) for the highest LPSP. In contrast, the solar-tidal-wind-based configuration inflicts the most damage, with 62.63 GJ/yr and 1794 mPt/yr for the highest LPSP. The finding indicates that the DA is faster (100 iterations) than the genetic algorithm (1000 iterations), particle swarm optimization (400 iterations), and artificial bee swarm optimization (300 iterations). The study underscores the solar-tidal-based configuration as the optimal choice across multiple criteria, offering a promising solution for freshwater supply and environmental sustainability on Al Lulu Island.
  8. Hosseinzadeh-Bandbafha H, Tabatabaei M, Aghbashlo M, Khanali M, Khalife E, Roodbar Shojaei T, et al.
    Data Brief, 2020 Jun;30:105428.
    PMID: 32322611 DOI: 10.1016/j.dib.2020.105428
    Integrated environmental analysis using life cycle assessment for different fuel blends used in a single-cylinder diesel engine was performed to select the most eco-friendly fuel blend. More specifically, the inventory data in support of the integrated environmental analysis of water-emulsified 5% biodiesel/diesel blends (B5) containing different levels of carbon nanoparticles (i.e., 38, 75, and 150 µM) as a novel fuel nanoadditives at a fixed engine speed of 1000 rpm and four different engine loads (i.e., 25, 50, 75, and 100%) are presented. Neat diesel, B5, and B5 containing water (3 wt.%) were used as controls. Raw data related to the production and combustion of fuel blends were experimentally collected. Industrial (i.e., experiments at large scale) and laboratory (i.e., experiments at small scale) data were used for fuel blends production while experimental data obtained by engine tests were used for the combustion stage. Then raw data were processed with the IMPACT 2002+ methods by using the SimaPro software and EcoInvent database and were then converted into environmental impacts. Accordingly, six supplementary files including the inventory data on integrated environmental analysis of the different fuel blends are presented (Supplementary Files 1-6). The data could be applied for integrated environmental analysis in order to avoid subjective weighting of combustion parameters for selecting the most eco-friendly fuel blend for use in diesel engines. More specifically, by developing a single score indicator obtained through conducting integrated combustion analysis, comparison of various fuel blends is largely facilitated.
  9. Sarlaki E, Kermani AM, Kianmehr MH, Asefpour Vakilian K, Hosseinzadeh-Bandbafha H, Ma NL, et al.
    Environ Pollut, 2021 Sep 15;285:117412.
    PMID: 34051566 DOI: 10.1016/j.envpol.2021.117412
    The use of agro-biowaste compost fertilizers in agriculture is beneficial from technical, financial, and environmental perspectives. Nevertheless, the physical, mechanical, and agronomical attributes of agro-biowaste compost fertilizers should be engineered to reduce their storage, handling, and utilization costs and environmental impacts. Pelletizing and drying are promising techniques to achieve these goals. In the present work, the effects of process parameters, including compost particle size/moisture content, pelletizing compression ratio, and drying air temperature/velocity, were investigated on the density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet. The Taguchi technique was applied to understand the effects of independent parameters on the output responses, while the optimal pellet properties were found using the iterative thresholding method. The soil and plant (sweet basil) response to the optimal biocompost pellet was experimentally evaluated. The farm application of the optimal pellet was also compared with the untreated agro-biowaste compost using the life cycle assessment approach to investigate the potential environmental impact mitigation of the pelletizing and drying processes. Generally, the compost moisture content was the most influential factor on the density and specific crushing energy of the dried pellet, while the moisture diffusion of the wet pellet during the drying process was significantly influenced by the pelletizing compression ratio. The density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet at the optimal conditions were 1242.49 kg/m3, 0.5054 MJ/t, and 8.2 × 10-8 m2/s, respectively. The optimal biocompost pellet could release 80% of its nitrogen content evenly over 98 days, while this value was 28 days for the chemical urea fertilizer. Besides, the optimal pellet could significantly improve the agronomical attributes of the sweet basil plant compared with the untreated biocompost. The applied strategy could collectively mitigate the weighted environmental impact of farm application of the agro-biowaste compost by more than 63%. This reduction could be attributed to the fact that the pelletizing-drying processes could avoid methane emissions from the untreated agro-biowaste compost during the farm application. Overall, pelletizing-drying of the agro-biowaste compost could be regarded as a promising strategy to improve the environmental and agronomical performance of farm application of organic biofertilizers.
  10. Hosseinzadeh-Bandbafha H, Nazemi F, Khounani Z, Ghanavati H, Shafiei M, Karimi K, et al.
    Sci Total Environ, 2021 Aug 21;802:149842.
    PMID: 34455274 DOI: 10.1016/j.scitotenv.2021.149842
    Global environmental awareness has encouraged further research towards biofuel production and consumption. Despite the favorable properties of biofuels, the sustainability of their conventional production pathways from agricultural feedstocks has been questioned. Therefore, the use of non-food feedstocks as a promising approach to ensure sustainable biofuel production is encouraged. However, the use of synthetic solvents/chemicals and energy carriers during biofuel production and the consequent adverse environmental effects are still challenging. On the other hand, biofuel production is also associated with generating large volumes of waste and wastewater. Accordingly, the circular bioeconomy as an innovative approach to ensure complete valorization of feedstocks and generated waste streams under the biorefinery scheme is proposed. In line with that, the current study aims to assess the environmental sustainability of bioethanol production in a safflower-based biorefinery using the life cycle assessment framework. Based on the obtained results, safflower production and its processing into 1 MJ bioethanol under the safflower-based biorefinery led to damage of 2.23E-07 disability-adjusted life years (DALY), 2.35E-02 potentially disappeared fraction (PDF)*m2*yr, 4.76E-01 kg CO2 eq., and 3.82 MJ primary on the human health, ecosystem quality, climate change, and resources, respectively. Moreover, it was revealed that despite adverse environmental effects associated with safflower production and processing, the substitution of conventional products, i.e., products that are the typical products in the market without having environmental criteria, with their bio-counterparts, i.e., products produced in the biorefinery based on environmental criteria could overshadow the unfavorable effects and substantially enhance the overall sustainability of the biorefinery system. The developed safflower-based biorefinery led to seven- and two-time reduction in damage to the ecosystem quality and resources damage categories, respectively. The reductions in damage to human health and climate change were also found to be 52% and 24%, respectively. The weighted environmental impacts of the safflower-based biorefinery decreased by 64% due to the production of bioproducts, mainly biodiesel and biogas, replacing their fossil-based counterparts, i.e., diesel and natural gas, respectively. Finally, although the main focus of the developed safflower-based biorefinery was biofuel production, waste valorization and mainly animal feed played a significant role in improving the associated environmental impacts.
  11. Amid S, Aghbashlo M, Peng W, Hajiahmad A, Najafi B, Ghaziaskar HS, et al.
    Sci Total Environ, 2021 Oct 20;792:148435.
    PMID: 34147796 DOI: 10.1016/j.scitotenv.2021.148435
    A diesel engine running on diesel/biodiesel mixtures containing ethylene glycol diacetate (EGDA) was investigated from the exergoeconomic and exergoenvironmental viewpoints. Biodiesel was mixed with petrodiesel at 5% and 20% volume ratios, and the resultant mixtures were then doped with EGDA at 1-3% volume ratios. The exergetic sustainability indicators of the engine operating on the prepared fuel formulations were determined at varying engine loads. The indicators were selected to support decision-making on fuel composition and engine load following thermodynamic, economic, and environmental considerations. The engine load markedly affected all the studied exergetic parameters. The highest engine exergetic efficiency (39.5%) was obtained for petrodiesel doped with 1 v/v% EGDA at the engine load of 50%. The minimum value of the unit cost of brake power exergy (49.6 US$/GJ) was found for straight petrodiesel at full-load conditions, while the minimum value of the unit environmental impact of brake power exergy (29.9 mPts/GJ) was observed for petrodiesel mixed with 5 v/v% biodiesel at the engine load of 75%. Overall, adding EGDA to fuel mixtures did not favorably influence the outcomes of both exergetic methods due to its energy-intensive and cost-prohibitive production process. In conclusion, although petrodiesel fuel improvers such EGDA used in the present study could properly mitigate pollutant emissions, the adverse effects of such additives on thermodynamic parameters of diesel engines, particularly on exergoeconomic and exergoenvironmental indices, need to be taken into account, and necessary optimizations should be made before their real-world application.
  12. Khounani Z, Abdul Razak NN, Hosseinzadeh-Bandbafha H, Madadi M, Sun F, Mohammadi P, et al.
    Environ Res, 2024 May 01;248:118286.
    PMID: 38280524 DOI: 10.1016/j.envres.2024.118286
    This study assesses the environmental impact of pine chip-based biorefinery processes, focusing on bioethanol, xylonic acid, and lignin production. A cradle-to-gate Life Cycle Assessment (LCA) is employed, comparing a novel biphasic pretreatment method (p-toluenesulfonic acid (TsOH)/pentanol, Sc-1) with conventional sulfuric acid pretreatment (H2SO4, Sc-2). The analysis spans biomass handling, pretreatment, enzymatic hydrolysis, yeast fermentation, and distillation. Sc-1 yielded an environmental impact of 1.45E+01 kPt, predominantly affecting human health (96.55%), followed by ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed 32.61%, 29.28%, and 38.11% to the total environmental burdens, respectively. Sc-2 resulted in an environmental burden of 1.64E+01 kPt, with a primary impact on human health (96.56%) and smaller roles for ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed differently at 22.59%, 12.5%, and 64.91%, respectively. Electricity generation was predominant in both scenarios, accounting for 99.05% of the environmental impact, primarily driven by its extensive usage in biomass handling and pretreatment processes. Sc-1 demonstrated a 13.05% lower environmental impact than Sc-2 due to decreased electricity consumption and increased bioethanol and xylonic acid outputs. This study highlights the pivotal role of pretreatment methods in wood-based biorefineries and underscores the urgency of sustainable alternatives like TsOH/pentanol. Additionally, adopting greener electricity generation, advanced technologies, and process optimization are crucial for reducing the environmental footprint of waste-based biorefineries while preserving valuable bioproduct production.
  13. Atarod P, Khlaife E, Aghbashlo M, Tabatabaei M, Hoang AT, Mobli H, et al.
    J Hazard Mater, 2021 04 05;407:124369.
    PMID: 33160782 DOI: 10.1016/j.jhazmat.2020.124369
    This study was set up to model and optimize the performance and emission characteristics of a diesel engine fueled with carbon nanoparticle-dosed water/‎diesel emulsion fuel using a combination of soft computing techniques. Adaptive neuro-fuzzy inference system tuned by particle ‎swarm algorithm was used for modeling the performance and emission parameters of the engine, while optimization of the engine operating parameters and the fuel composition was conducted via multiple-objective particle ‎swarm algorithm. The model input variables were: injection timing (35-41° CA BTDC), engine load (0-100%), nanoparticle dosage (0-150 μM), and water content (0-3 wt%). The model output variables included: brake specific fuel consumption, brake thermal efficiency, as well as carbon monoxide, carbon dioxide, nitrogen oxides, and unburned hydrocarbons emission concentrations. The training and testing of the modeling system were performed on the basis of 60 data patterns obtained from the experimental trials. The effects of input variables on the performance and emission characteristics of the engine were thoroughly analyzed and comprehensively discussed as well. According to the experimental results, injection timing and engine load could significantly affect all the investigated performance and emission parameters. Water and nanoparticle addition to diesel could markedly affect some performance and emission parameters. The modeling system could predict the output parameters with an R2 > 0.93, MSE 
  14. Khounani Z, Hosseinzadeh-Bandbafha H, Nizami AS, Sulaiman A, Goli SAH, Tavassoli-Kafrani E, et al.
    Data Brief, 2020 Feb;28:104933.
    PMID: 31886362 DOI: 10.1016/j.dib.2019.104933
    In order to develop a product sustainably, multiple analyses, including comprehensive environmental assessment, are required. Solar-assisted production of walnut husk methanolic extract (WHME) as a natural antioxidant for biodiesel was scrutinized by using the life cycle assessment (LCA) approach. More specifically, the environmental sustainability of WHME antioxidant was evaluated and compared to that of propyl gallate (PG), the most widely used synthetic biodiesel antioxidant, under two scenarios. Additionally, supplementary files including the inventory data consisting of raw data as well as elementary flows, mid-point, and end-point categories are presented. The analysis of scenarios revealed that the use of the natural antioxidant and the avoidance of the chemical antioxidant in biodiesel fuel could be regarded as an eco-friendly approach substantially enhancing the environmental friendliness of biodiesel in particular in terms of human health. Furthermore, given the waste-oriented nature of WHME, the scenario involved its application could serve as a promising strategy to simultaneously valorize the agro-waste and generate a value-added product; a move toward implementing the circular economy approach in the biodiesel industry.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links