OBJECTIVES: The objectives of this study are to examine the influence of newly identified mutations on the interaction between c-Src and the HK2 enzyme and to discover potent phytocompounds capable of disrupting this interaction.
METHODS: In this study, we utilized molecular docking to check the effect of the identified mutation on the binding of c-Src with HK2. Virtual drug screening, MD simulation, and binding free energy were employed to identify potent drugs against the binding interface of c-Src and HK2.
RESULTS: Among these mutations, six (W151C, L272P, A296S, A330D, R391H, and P434A) were observed to significantly disrupt the stability of the c-Src structure. Additionally, through molecular docking analysis, we demonstrated that the mutant forms of c-Src exhibited high binding affinities with HK2. The wildtype showed a docking score of -271.80 kcal/mol, while the mutants displayed scores of -280.77 kcal/mol, -369.01 kcal/mol, -324.41 kcal/mol, -362.18 kcal/mol, 266.77 kcal/mol, and -243.28 kcal/mol for W151C, L272P, A296S, A330D, R391H, and P434A respectively. Furthermore, we identified five lead phytocompounds showing strong potential to impede the binding of c-Src with HK2 enzyme, essential for colon cancer progression. These compounds exhibit robust bonding with c-Src with docking scores of -7.37 kcal/mol, -7.26 kcal/mol, -6.88 kcal/mol, -6.81 kcal/mol, and -6.73 kcal/mol. Moreover, these compounds demonstrate dynamic stability, structural compactness, and the lowest residual fluctuation during MD simulation. The binding free energies for the top five hits (-42.44±0.28 kcal/mol, -28.31±0.25 kcal/mol, -34.95±0.44 kcal/mol, -38.92±0.25 kcal/mol, and -30.34±0.27 kcal/mol), further affirm the strong interaction of these drugs with c-Src which might impede the cascade of events that drive the progression of colon cancer.
CONCLUSION: Our findings serve as a promising foundation, paving the way for future discoveries in the fight against colorectal cancer.
METHODS: In this multicenter randomized trial, critically ill patients will be randomized to receive supplemental enteral protein (1.2 g/kg/day) added to standard enteral nutrition to achieve a high amount of enteral protein (range of 2-2.4 g/kg/day) or no supplemental enteral protein to achieve a moderate amount of enteral protein (0.8-1.2 g/kg/day). The primary outcome is 90-day all-cause mortality; other outcomes include functional and health-related quality-of-life assessments at 90 days. The study sample size of 2502 patients will have 80% power to detect a 5% absolute risk reduction in 90-day mortality from 30 to 25%. Consistent with international guidelines, this statistical analysis plan specifies the methods for evaluating primary and secondary outcomes and subgroups. Applying this statistical analysis plan to the REPLENISH trial will facilitate unbiased analyses of clinical data.
CONCLUSION: Ethics approval was obtained from the institutional review board, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia (RC19/414/R). Approvals were also obtained from the institutional review boards of each participating institution. Our findings will be disseminated in an international peer-reviewed journal and presented at relevant conferences and meetings.
TRIAL REGISTRATION: ClinicalTrials.gov, NCT04475666 . Registered on July 17, 2020.