In today’s world managing monthly budget is a very important task, things are getting expensive day to day and pays are getting lesser, the only way to manage monthly budgets is to track the expenses and plan the expense in order to manage the monthly budget well. The project aim is to create a key for Android users on how to achieve their finances in any circumstance thru tracking the expenses every day. Finally, this pays to societal well-being. Beside that it will also give expert tips to the users on how to manage budget effectively.
This work is to investigate the diagnostic value of a deep learning-based magnetic resonance imaging (MRI) image segmentation (IS) technique for shoulder joint injuries (SJIs) in swimmers. A novel multi-scale feature fusion network (MSFFN) is developed by optimizing and integrating the AlexNet and U-Net algorithms for the segmentation of MRI images of the shoulder joint. The model is evaluated using metrics such as the Dice similarity coefficient (DSC), positive predictive value (PPV), and sensitivity (SE). A cohort of 52 swimmers with SJIs from Guangzhou Hospital serve as the subjects for this study, wherein the accuracy of the developed shoulder joint MRI IS model in diagnosing swimmers' SJIs is analyzed. The results reveal that the DSC for segmenting joint bones in MRI images based on the MSFFN algorithm is 92.65%, with PPV of 95.83% and SE of 96.30%. Similarly, the DSC for segmenting humerus bones in MRI images is 92.93%, with PPV of 95.56% and SE of 92.78%. The MRI IS algorithm exhibits an accuracy of 86.54% in diagnosing types of SJIs in swimmers, surpassing the conventional diagnostic accuracy of 71.15%. The consistency between the diagnostic results of complete tear, superior surface tear, inferior surface tear, and intratendinous tear of SJIs in swimmers and arthroscopic diagnostic results yield a Kappa value of 0.785 and an accuracy of 87.89%. These findings underscore the significant diagnostic value and potential of the MRI IS technique based on the MSFFN algorithm in diagnosing SJIs in swimmers.
Generating extreme appearances such as scared awaiting sweating while happy fit for tears (cry) and blushing (anger and happiness) is the key issue in achieving the high quality facial animation. The effects of sweat, tears, and colors are integrated into a single animation model to create realistic facial expressions of 3D avatar. The physical properties of muscles, emotions, or the fluid properties with sweating and tears initiators are incorporated. The action units (AUs) of facial action coding system are merged with autonomous AUs to create expressions including sadness, anger with blushing, happiness with blushing, and fear. Fluid effects such as sweat and tears are simulated using the particle system and smoothed-particle hydrodynamics (SPH) methods which are combined with facial animation technique to produce complex facial expressions. The effects of oxygenation of the facial skin color appearance are measured using the pulse oximeter system and the 3D skin analyzer. The result shows that virtual human facial expression is enhanced by mimicking actual sweating and tears simulations for all extreme expressions. The proposed method has contribution towards the development of facial animation industry and game as well as computer graphics.
This paper presents a novel features mining approach from documents that could not be mined via optical character recognition (OCR). By identifying the intimate relationship between the text and graphical components, the proposed technique pulls out the Start, End, and Exact values for each bar. Furthermore, the word 2-gram and Euclidean distance methods are used to accurately detect and determine plagiarism in bar charts.