Displaying all 4 publications

Abstract:
Sort:
  1. Azman EA, Ismail R, Ninomiya S, Jusop S, Tongkaemkaew U
    PLoS One, 2023;18(9):e0290703.
    PMID: 37713375 DOI: 10.1371/journal.pone.0290703
    Acid sulfate soil characterized by pyrite (FeS2) which produces high acidity (soil pH < 3.5) and release high amount of Al3+ and Fe2+. Application of 4 t ha-1 Ground Magnesium Limestone (GML), is a common rate used for acid sulfate soil by the rice farmers in Malaysia. Therefore, this study was conducted to evaluate the integral effect of ground magnesium limestone (GML) and calcium silicate and to determine the optimal combination on acid sulfate soils in Malaysia. The acid sulfate soils were incubated under the submerged condition for 120 days with GML (0, 2, 4, 6 t ha-1) in combination with calcium silicate (0, 1, 2, 3 t ha-1) arranged in a Completely Randomized Design (CRD). The soil was sampled after 30, 60, 90 and 120 days of incubation and analyzed for soil pH, exchangeable Al, Ca, Mg, K and available Si. A total of 2 out of 16 combinations met the desired soil requirement for rice cultivation. The desired chemical soil characteristics for rice cultivation are soil pH > 4, exchangeable Al < 2 cmolc Kg-1, exchangeable Ca > 2 cmolc kg-1, exchangeable Mg > 1 cmolc kg-1 and Si content > 43 mg kg-1. The combinations are i) 2 t ha-1 calcium silicate + 2 t ha-1 GML, and ii) 3 t ha-1 calcium silicate + 2 t ha-1 GML, respectively. These combination rates met the desired requirement of soil chemical characteristics for rice cultivation. Soil acidity was reduced by a gradual release of Ca2+ and SiO32- from calcium silicate continuously filling the exchange sites and reducing the potential of extra (free) H+ availability in the soil system. Combination of calcium silicate and GML, shows the ameliorative effect with; i) release of Ca, ii) binding of Al3+ making it inert Al-hydroxides and, iii) bind H+ to produce water molecules.
  2. Garg K, Dhar S, Kumar S, Azman EA, Sharma VK, Meena RP, et al.
    J Environ Manage, 2024 Jul 08;366:121759.
    PMID: 38981257 DOI: 10.1016/j.jenvman.2024.121759
    The significance of integrating agricultural by-products such as paddy husk ash (PHA) and potato peels with organic fertilizers lies in enhancing soil fertility, increasing crop yields, and reducing reliance on traditional organic fertilizers like farmyard manure (FYM) or compost alone. Grounded in sustainable agriculture and nutrient management frameworks, this study examines the impact of diverse formulations derived from agricultural waste on productivity, nutrient efficiency, and profitability in a pigeon pea-vegetable mustard-okra cropping system. A two-year field experiment (2020-2022) at ICAR-IARI, New Delhi tested seven nutrient sources viz., (T1) control, (T2) 100% RDN through FYM, (T3) 100% RDN through improved RRC, (T4) 100% RDN through PHA based formulation, (T5) 75% RDN through PHA based formulation, (T6) 100% RDN through PPC based formulation and (T7) 75% RDN through PPC based formulation that were tested in RBD and replicated thrice. Treatment T4 had significant effect on seed yield of pigeon pea (1.89 ± 0.09 and 1.97 ± 0.12 t ha-1), leaf yield of vegetable mustard (81.57 ± 4.59 and 82.97 ± 4.17 t ha-1), and fruit yield of okra (13.54 ± 0.82 and 13.78 ± 0.81 t ha-1) grown in rotation, followed by treatment T6 and T2 during both the years respectively over control. Enhanced system uptake of N, P and K along with system gross and net returns in T4, showed increases of 78.9%, 83.8%, 72.4%, 54.4% and 56.8% in the first year and 77.5%, 80.8%, 77.7%, 54.8% and 57.4% in the second year, respectively, over control. Treatment T4 significantly improved apparent recovery by 66.3% and 69.2% in pigeon pea, 64.7% and 47.9% in vegetable mustard, and 72.7% and 79.4% in okra over T3, averaged across two years. Based on the above findings, (T4) 100% RDN through PHA-based formulation, and (T6) 100% RDN through PPC-based formulation can be recommended for areas with a shortage of FYM but availability of rice husk ash/potato peels for sustainable agricultural wastes and improved sustainability.
  3. Choudhary M, Kumar S, Onte S, Meena VK, Malakar D, Garg K, et al.
    Heliyon, 2024 Sep 15;10(17):e36208.
    PMID: 39263071 DOI: 10.1016/j.heliyon.2024.e36208
    Potassium, a pivotal macronutrient essential for growth, development, and crop yield, serves as a critical determinant of soil productivity. Its depletion disrupts the equilibrium of soil nutrients, prompting an investigation into integrated potassium management strategies to address this challenge. A field experiment was conducted during the winter season of 2020 using a randomized complete block design, with eight treatments, each replicated three times in Chinese cabbage (Brassica rapa L. subsp. chinensis). These treatments comprised standard (100 %) and reduced (75 % and 50 %) rates of the recommended dose of potassium (RDK) via muriate of potash (MOP). Variations in the inclusion and exclusion of plant growth-promoting rhizobacteria (PGPR), farmyard manure (FYM) as 25 % of the potassium recommendation, and foliar spray of nano potash were systematically implemented. Findings unequivocally demonstrated that the treatmentT8, involving 100 % RDK +25 % K through FYM + PGPR + nano K fertilizer spray at 25 and 40 DAS, yielded significant improvements in both green fodder (64.0 t ha-1) and dry fodder (7.87 t ha-1).Moreover, T8 exhibited the highest values for total ash (8.75 %), total ash yield (68.9 ± 2.88 kg ha-1), ether extract (2.85 %), ether extract yield (22.4 ± 0.88 kg ha-1), crude protein (9.71 %), and total crude protein yield (76.4 ± 3.21 kg ha-1). Conversely, a marked reduction was observed in various fiber components and carbohydrate fractions upon application of the T8 treatment. The lowest values of yield, crude protein content, total ash ether extract were recorded in treatment T1 (control) applied with no potassium. This investigation underscores the inadequacy of the recommended potassium dose in achieving optimal productivity, necessitating a re-evaluation of potassium fertilization levels. The integrated approach involving FYM, PGPR, and nano potash, coupled with the recommended potassium dose through MOP, emerges as a promising avenue for augmenting both yield and quality parameters in Chinese cabbage.
  4. Garg K, Dhar S, Sharma VK, Azman EA, Meena RP, Hashim M, et al.
    Front Plant Sci, 2024;15:1398083.
    PMID: 38962246 DOI: 10.3389/fpls.2024.1398083
    Utilizing agricultural and industrial wastes, potent reservoirs of nutrients, for nourishing the soil and crops through composting embodies a sustainable approach to waste management and organic agriculture. To investigate this, a 2-year field experiment was conducted at ICAR-IARI, New Delhi, focusing on a pigeon pea-vegetable mustard-okra cropping system. Seven nutrient sources were tested, including a control (T1), 100% recommended dose of nitrogen (RDN) through farmyard manure (T2), 100% RDN through improved rice residue compost (T3), 100% RDN through a paddy husk ash (PHA)-based formulation (T4), 75% RDN through PHA-based formulation (T5), 100% RDN through a potato peel compost (PPC)-based formulation (T6), and 75% RDN through PPC-based formulation (T7). Employing a randomized block design with three replications, the results revealed that treatment T4 exhibited the significantly highest seed (1.89 ± 0.09 and 1.97 ± 0.12 t ha-1) and stover (7.83 ± 0.41 and 8.03 ± 0.58 t ha-1) yield of pigeon pea, leaf yield (81.57 ± 4.69 and 82.97 ± 4.17 t ha-1) of vegetable mustard, and fruit (13.54 ± 0.82 and 13.78 ± 0.81 t ha-1) and stover (21.64 ± 1.31 and 22.03 ± 1.30 t ha-1) yield of okra during both study years compared to the control (T1). Treatment T4 was on par with T2 and T6 for seed and stover yield in pigeon pea, as well as okra, and leaf yield in vegetable mustard over both years. Moreover, T4 demonstrated notable increase of 124.1% and 158.2% in NH4-N and NO3-N levels in the soil, respectively, over the control. The enhanced status of available nitrogen (N) and phosphorus (P) in the soil, coupled with increased soil organic carbon (0.41%), total bacteria population (21.1%), fungi (37.2%), actinomycetes (44.6%), and microbial biomass carbon (28.5%), further emphasized the positive impact of T4 compared to the control. Treatments T2 and T6 exhibited comparable outcomes to T4 concerning changes in available N, P, soil organic carbon, total bacteria population, fungi, actinomycetes, and microbial biomass carbon. In conclusion, treatments T4 and T6 emerge as viable sources of organic fertilizer, particularly in regions confronting farmyard manure shortages. These formulations offer substantial advantages, including enhanced yield, soil quality improvement, and efficient fertilizer utilization, thus contributing significantly to sustainable agricultural practices.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links