Affiliations 

  • 1 Faculty of Agriculture, Department of Crop Science, Universiti Putra Malaysia, Serdang, Malaysia
  • 2 Faculty of Agriculture, Department of Land Management, Universiti Putra Malaysia, Serdang, Malaysia
  • 3 Department of Global Agriculture, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
  • 4 Faculty of Technology and Community Development, Department of Plant Science, Thaksin University, Phatthalung, Thailand
PLoS One, 2023;18(9):e0290703.
PMID: 37713375 DOI: 10.1371/journal.pone.0290703

Abstract

Acid sulfate soil characterized by pyrite (FeS2) which produces high acidity (soil pH < 3.5) and release high amount of Al3+ and Fe2+. Application of 4 t ha-1 Ground Magnesium Limestone (GML), is a common rate used for acid sulfate soil by the rice farmers in Malaysia. Therefore, this study was conducted to evaluate the integral effect of ground magnesium limestone (GML) and calcium silicate and to determine the optimal combination on acid sulfate soils in Malaysia. The acid sulfate soils were incubated under the submerged condition for 120 days with GML (0, 2, 4, 6 t ha-1) in combination with calcium silicate (0, 1, 2, 3 t ha-1) arranged in a Completely Randomized Design (CRD). The soil was sampled after 30, 60, 90 and 120 days of incubation and analyzed for soil pH, exchangeable Al, Ca, Mg, K and available Si. A total of 2 out of 16 combinations met the desired soil requirement for rice cultivation. The desired chemical soil characteristics for rice cultivation are soil pH > 4, exchangeable Al < 2 cmolc Kg-1, exchangeable Ca > 2 cmolc kg-1, exchangeable Mg > 1 cmolc kg-1 and Si content > 43 mg kg-1. The combinations are i) 2 t ha-1 calcium silicate + 2 t ha-1 GML, and ii) 3 t ha-1 calcium silicate + 2 t ha-1 GML, respectively. These combination rates met the desired requirement of soil chemical characteristics for rice cultivation. Soil acidity was reduced by a gradual release of Ca2+ and SiO32- from calcium silicate continuously filling the exchange sites and reducing the potential of extra (free) H+ availability in the soil system. Combination of calcium silicate and GML, shows the ameliorative effect with; i) release of Ca, ii) binding of Al3+ making it inert Al-hydroxides and, iii) bind H+ to produce water molecules.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.