Displaying publications 1 - 20 of 211 in total

  1. Khan NI, Ijaz K, Zahid M, Khan AS, Abdul Kadir MR, Hussain R, et al.
    Mater Sci Eng C Mater Biol Appl, 2015 Nov 1;56:286-93.
    PMID: 26249592 DOI: 10.1016/j.msec.2015.05.025
    Hydroxyapatite is used extensively in hard tissue repair due to its biocompatibility and similarity to biological apatite, the mineral component of bone. It differs subtly in composition from biological apatite which contains other ions such as magnesium, zinc, carbonate and silicon (believed to play biological roles). Traditional methods of hydroxyapatite synthesis are time consuming and require strict reaction parameter control. This paper outlines synthesis of magnesium substituted hydroxyapatite using simple microwave irradiation of precipitated suspensions. Microwave irradiation resulted in a drastic decrease in ageing times of amorphous apatitic phases. Time taken to synthesize hydroxyapatite (which remained stable upon heat treatment at 900°C for 1h) reduced twelve folds (to 2h) as compared to traditionally required times. The effects of increasing magnesium concentration in the precursors on particle size, surface area, phase-purity, agglomeration and thermal stability, were observed using scanning electron microscopy, BET surface area analysis, X-ray diffraction and photo acoustic Fourier transform infra-red spectroscopy. Porous agglomerates were obtained after a brief heat-treatment (1h) at 900°C.
    Matched MeSH terms: Magnesium/chemistry*
  2. Zheltova AA, Kharitonova MV, Iezhitsa IN, Serebryansky EP, Evsyukov OY, Spasov AA, et al.
    J Trace Elem Med Biol, 2017 Jan;39:36-42.
    PMID: 27908421 DOI: 10.1016/j.jtemb.2016.07.002
    The aim of the present study was to assess whether dietary magnesium deficiency can alter distribution of macroelements and trace elements in different organs and tissues. Experiments were carried out on 12 adult female Wistar rats, which were fed either a diet with low Mg content (≤20mgkg(-1) of diet) (LMgD) or a diet with daily recommended Mg content (≈500mgkg(-1)) as control group (CG) for 70 days. On the 70th day of the experiment heart, aorta, femoral skeletal muscle, forebrain, cerebellum, pituitary gland, thyroid gland, ovaries, uterus, liver, kidneys, and spleen were taken for analysis of mineral content. Concentrations of Fe and Ca were measured by inductively coupled plasma-atomic emission spectrometry, and levels of Na, K, Mg, Co, Cu, Zn, Ni, Se, I were determined by inductively coupled plasma mass spectrometry. On the 70th day, LMgD led to significant reduction of Mg level in red blood cells, plasma, aorta, uterus and thyroid gland compared to CG as well as resulted in significant decrease of Mg/Ca ratio in kidneys, spleen and ovaries. Contrary to this, an increase of Mg/Ca ratio was found in cerebellum of LMgD group. Significant decrease of K concentration was shown in aorta of LMgD animals compared to CG whereas myocardial K concentration was increased in LMgD group. Na level was two-fold higher in skeletal muscles of rats that received LMgD in comparison to CG (p=0.006). Increased concentrations of Fe in ovaries and uterus were found in LMgD. Mg restriction did not affect Zn concentration in any of tasted tissues. Se level was higher in spleen and lower in uterus of LMgD animals compared to CG. MgD was accompanied by increased level of Co in skeletal muscles and decreased its level in kidneys and uterus. LMgD feeding was associated with decreased concentrations of Ni in heart, thyroid gland, spleen, uterus and Co in heart, aorta, liver, kidneys, spleen and ovaries. The changes of Mg, K, Co content were accompanied by dramatic (10-fold) decrease of I concentration in aorta of LMgD animals. LMgD causes decrease of I content in ovaries and increase of I level in uterus vs CG. Thus, distribution of macroelements (Ca, Na, K) was weakly affected by Mg restriction that led to the most evident alterations of Co and Ni tissue levels. Moreover, mineral balance of uterus seems to be the most susceptible to low Mg intake. Hypomagnesaemia resulted in significant changes of 5 studied trace elements (Fe, Se, Cu, Ni and Co).
    Matched MeSH terms: Magnesium/administration & dosage*; Magnesium/blood; Magnesium/metabolism; Magnesium Deficiency/blood; Magnesium Deficiency/metabolism*
  3. Agarwal R, Iezhitsa I, Agarwal P, Spasov A
    Exp Eye Res, 2012 Aug;101:82-9.
    PMID: 22668657 DOI: 10.1016/j.exer.2012.05.008
    Magnesium is one of the most important regulatory cation involved in several biological processes. It is important for maintaining the structural and functional integrity of vital ocular tissues such as lens. Presence of high magnesium content especially in the peripheral part of lens as compared to aqueous and vitreous humor has been observed. Magnesium plays significant role as a cofactor for more than 350 enzymes in the body especially those utilizing ATP. Membrane associated ATPase functions that are crucial in regulating the intracellular ionic environment, are magnesium-dependent. Moreover, the enzymes involved in ATP production and hydrolysis are also magnesium-dependent. Magnesium deficiency by interfering with ATPase functions causes increased intracellular calcium and sodium and decreases intracellular potassium concentration. Furthermore, magnesium deficiency is associated with increased oxidative stress secondary to increased expression of inducible nitric oxide synthase and increased production of nitric oxide. Thus the alterations in lenticular redox status and ionic imbalances form the basis of the association of magnesium deficiency with cataract. In this paper we review the mechanisms involved in magnesium homeostasis and the role of magnesium deficiency in the pathogenesis of cataract.
    Matched MeSH terms: Magnesium Deficiency/physiopathology*; Magnesium Compounds/metabolism
  4. Sinniah D
    Intern Med J, 2015 Apr;45(4):467-8.
    PMID: 25827521 DOI: 10.1111/imj.12715
    Matched MeSH terms: Magnesium Deficiency/blood; Magnesium Deficiency/complications*; Magnesium Deficiency/diagnosis*
  5. Kharitonova M, Iezhitsa I, Zheltova A, Ozerov A, Spasov A, Skalny A
    J Trace Elem Med Biol, 2015 Jan;29:227-34.
    PMID: 25127069 DOI: 10.1016/j.jtemb.2014.06.026
    Magnesium (Mg) deficiency is implicated in the development of numerous disorders of the cardiovascular system. Moreover, the data regarding the efficacy of different magnesium compounds in the correction of impaired functions due to low magnesium intake are often fragmentary and inconsistent. The aim of this study was to compare the effects of the most bioavailable Mg compounds (Mg l-aspartate, Mg N-acetyltaurate, Mg chloride, Mg sulphate and Mg oxybutyrate) on systemic inflammation and endothelial dysfunction in rats fed a low Mg diet for 74 days. A low Mg diet decreased the Mg concentration in the plasma and erythrocytes, which was accompanied by a reduced concentration of eNOs and increased levels of endothelin-1 level in the serum and impaired endothelium-dependent vasodilatation. These effects increased the concentration of proinflammatory molecules, such as VCAM-1, TNF-α, IL-6 and CRP, indicating the development of systemic inflammation and endothelial dysfunction. The increased total NO level, which estimated from the sum of the nitrate and nitrite concentrations in the serum, may also be considered to be a proinflammatory marker. Two weeks of Mg supplementation partially or fully normalised the ability of the vascular wall to effect adequate endothelium-dependent vasodilatation and reversed the levels of most endothelial dysfunction and inflammatory markers (except CRP) to the mean values of the control group. Mg sulphate had the smallest effect on the endothelin-1, TNF-α and VCAM-1 levels. Mg N-acetyltaurate was significantly more effective in restoring the level of eNOS compared to all other studied compounds, except for Mg oxybutyrate. Taken together, the present findings demonstrate that all Mg compounds equally alleviate endothelial dysfunction and inflammation caused by Mg deficiency. Mg sulphate tended to be the least effective compound.
    Matched MeSH terms: Magnesium/blood; Magnesium Deficiency/pathology; Magnesium Deficiency/physiopathology; Magnesium Compounds/pharmacology*
  6. Agarwal R, Iezhitsa IN, Agarwal P, Spasov AA
    Magnes Res, 2013 Jan-Feb;26(1):2-8.
    PMID: 23708888 DOI: 10.1684/mrh.2013.0336
    Senile cataract is the most common cause of bilateral blindness and results from the loss of transparency of the lens. Maintenance of the unique tissue architecture of the lens is vital for keeping the lens transparent. Membrane transport mechanisms utilizing several magnesium (Mg)-dependent ATPases, play an important role in maintaining lens homeostasis. Therefore, in Mg-deficiency states, ATPase dysfunctions lead to intracellular depletion of K(+) and accumulation of Na(+) and Ca(2+). High intracellular Ca(2+) causes activation of the enzyme calpain II, which leads to the denaturation of crystallin, the soluble lens protein required for maintaining the transparency of the lens. Mg deficiency also interferes with ATPase functions by causing cellular ATP depletion. Furthermore, Mg deficiency enhances lenticular oxidative stress by increased production of free radicals and depletion of antioxidant defenses. Therefore, Mg supplementation may be of therapeutic value in preventing the onset and progression of cataracts in conditions associated with Mg deficiency.
    Matched MeSH terms: Magnesium Deficiency/complications*; Magnesium Deficiency/pathology
  7. Rahman MM, Abdullah RB, Wan Khadijah WE
    J Anim Physiol Anim Nutr (Berl), 2013 Aug;97(4):605-14.
    PMID: 22548678 DOI: 10.1111/j.1439-0396.2012.01309.x
    Published data on oxalate poisoning in domestic animals are reviewed, with a focus on tolerance and performance. Oxalic acid is one of a number of anti-nutrients found in forage. It can bind with dietary calcium (Ca) or magnesium (Mg) to form insoluble Ca or Mg oxalate, which then may lead to low serum Ca or Mg levels as well as to renal failure because of precipitation of these salts in the kidneys. Dietary oxalate plays an important role in the formation of Ca oxalate, and a high dietary intake of Ca may decrease oxalate absorption and its subsequent urinary excretion. Oxalate-rich plants can be supplemented with other plants as forage for domestic animals, which may help to reduce the overall intake of oxalate-rich plants. Non-ruminants appear to be more sensitive to oxalate than ruminants because in the latter, rumen bacteria help to degrade oxalate. If ruminants are slowly exposed to a diet high in oxalate, the population of oxalate-degrading bacteria in the rumen increases sufficiently to prevent oxalate poisoning. However, if large quantities of oxalate-rich plants are eaten, the rumen is overwhelmed and unable to metabolize the oxalate and oxalate-poisoning results. Based on published data, we consider that <2.0% soluble oxalate would be an appropriate level to avoid oxalate poisoning in ruminants, although blood Ca level may decrease. In the case of non-ruminants, <0.5% soluble oxalate may be acceptable. However, these proposed safe levels of soluble oxalate should be regarded as preliminary. Further studies, especially long-term studies, are needed to validate and improve the recommended safe levels in animals. This review will encourage further research on the relationships between dietary oxalate, other dietary factors and renal failure in domestic animals.
    Matched MeSH terms: Magnesium/metabolism; Magnesium/chemistry
  8. Madduluri VR, Marella RK, Hanafiah MM, Lakkaboyana SK, Suresh Babu G
    Sci Rep, 2020 Dec 17;10(1):22170.
    PMID: 33335173 DOI: 10.1038/s41598-020-79188-z
    Magnesium aluminate spinel (MgAl2O4) supported Co3O4 catalysts are synthesized and tested for the oxidative dehydrogenation (ODH) of ethylbenzene using CO2 as a soft oxidant. The effect of spinel calcination temperature on the catalytic performance has been systematically investigated. With an increase in the activation temperature from 600 to 900 °C, the active presence of a single-phase MgAl2O4 spinel is observed. A catalyst series consisting of MgAl2O4 spinel with varying Co loadings (10-20 wt%) were prepared and systematically distinguished by ICP, XRD, BET, TPR, NH3-TPD, UV-Vis DRS, FT-IR, XPS, SEM, and TEM. Among the tested cobalt catalysts, 15Co/800MA sample derived by calcination of MgAl2O4 support at 800 °C exhibits the most excellent catalytic performance with the maximum ethylbenzene conversion (≥ 82%). Also, high yields of styrene (≥ 81%) could be consistently achieved on the same active catalyst. Further, the catalyst exhibited almost stable activity during 20 h time-on-stream with a slow decrease in the ethylbenzene conversion from 82 to 59%. However, the selectivity of styrene (98%) stayed almost constant during the reaction. Activation of the MgAl2O4 spinel at 800 °C facilitates a dramatic chemical homogeneity for the alignment of Co3O4 nanoparticles on the surface of the active catalyst. Moreover, the isolated Co3O4 clusters have a strong chemical/electronic interaction with the Mg2+ and Al3+ ions on the support perform a crucial role to achieve the maximum catalytic activity.
    Matched MeSH terms: Magnesium; Magnesium Oxide; Magnesium Compounds
  9. Bakhsheshi-Rad HR, Hamzah E, Kasiri-Asgarani M, Jabbarzare S, Iqbal N, Abdul Kadir MR
    Mater Sci Eng C Mater Biol Appl, 2016 Mar;60:526-537.
    PMID: 26706560 DOI: 10.1016/j.msec.2015.11.057
    The present study addressed the synthesis of a bi-layered nanostructured fluorine-doped hydroxyapatite (nFHA)/polycaprolactone (PCL) coating on Mg-2Zn-3Ce alloy via a combination of electrodeposition (ED) and dip-coating methods. The nFHA/PCL composite coating is composed of a thick (70-80 μm) and porous layer of PCL that uniformly covered the thin nFHA film (8-10 μm) with nanoneedle-like microstructure and crystallite size of around 70-90 nm. Electrochemical measurements showed that the nFHA/PCL composite coating presented a high corrosion resistance (R(p)=2.9×10(3) kΩ cm(2)) and provided sufficient protection for a Mg substrate against galvanic corrosion. The mechanical integrity of the nFHA/PCL composite coatings immersed in SBF for 10 days showed higher compressive strength (34% higher) compared with the uncoated samples, indicating that composite coatings can delay the loss of compressive strength of the Mg alloy. The nFHA/PCL coating indicted better bonding strength (6.9 MPa) compared to PCL coating (2.2 MPa). Immersion tests showed that nFHA/PCL composite-coated alloy experienced much milder corrosion attack and more nucleation sites for apatite compared with the PCL coated and uncoated samples. The bi-layered nFHA/PCL coating can be a good alternative method for the control of corrosion degradation of biodegradable Mg alloy for implant applications.
    Matched MeSH terms: Magnesium/chemistry*
  10. Das Arulsamy A, Kregar Z, Eleršič K, Modic M, Subramani US
    Phys Chem Chem Phys, 2011 Sep 7;13(33):15175-81.
    PMID: 21776515 DOI: 10.1039/c1cp20138g
    Hydrogen produced from the photocatalytic splitting of water is one of the reliable alternatives to replace the polluting fossil and the radioactive nuclear fuels. Here, we provide unequivocal evidence for the existence of blue- and red-shifting O-H covalent bonds within a single water molecule adsorbed on the MgO surface as a result of asymmetric displacement polarizabilities. The adsorbed H-O-H on MgO gives rise to one weaker H-O bond, while the other O-H covalent bond from the same adsorbed water molecule compensates this effect with a stronger bond. The weaker bond (nearest to the surface), the interlayer tunneling electrons and the silver substrate are shown to be the causes for the smallest dissociative activation energy on the MgO monolayer. The origin that is responsible to initiate the splitting mechanism is proven to be due to the changes in the polarizability of an adsorbed water molecule, which are further supported by the temperature-dependent static dielectric constant measurements for water below the first-order electronic-phase transition temperature.
    Matched MeSH terms: Magnesium Oxide/chemistry
  11. Mhareb MH, Hashim S, Ghoshal SK, Alajerami YS, Saleh MA, Razak NA, et al.
    Luminescence, 2015 Dec;30(8):1330-5.
    PMID: 25828828 DOI: 10.1002/bio.2902
    We report the impact of dysprosium (Dy(3+)) dopant and magnesium oxide (MgO) modifier on the thermoluminescent properties of lithium borate (LB) glass via two procedures. The thermoluminescence (TL) glow curves reveal a single prominent peak at 190 °C for 0.5 mol% of Dy(3+). An increase in MgO contents by 10 mol% enhances the TL intensity by a factor of 1.5 times without causing any shift in the maximum temperature. This enhancement is attributed to the occurrence of extra electron traps created via magnesium and the energy transfer to trivalent Dy(3+) ions. Good linearity in the range of 0.01-4 Gy with a linear correlation coefficient of 0.998, fading as low as 21% over a period of 3 months, excellent reproducibility without oven annealing and tissue equivalent effective atomic numbers ~8.71 are achieved. The trap parameters, including geometric factor (μg), activation energy (E) and frequency factor (s) associated with LMB:Dy are also determined. These favorable TL characteristics of prepared glasses may contribute towards the development of Li2O-MgO-B2O3 radiation dosimeters.
    Matched MeSH terms: Magnesium Compounds/chemistry*
  12. Abdulsalam M, Che Man H, Goh PS, Yunos KF, Zainal Abidin Z, Isma M I A, et al.
    Polymers (Basel), 2020 Mar 03;12(3).
    PMID: 32138186 DOI: 10.3390/polym12030549
    This study focused on developing a hydrophilic hybrid polyvinylidene fluoride (PVDF)-polyethylene glycol (PEG) hollow membrane by incorporating Nano-magnesium oxide (NMO) as a potent antifouling mediator. The Nano-hybrid hollow fibers with varied loading of NMO (0 g; 0.25 g; 0.50 g; 0.75 g and 1.25 g) were spun through phase inversion technique. The resultants Nano-hybrid fibers were characterized and compared based on SEM, EDX, contact angle, surface zeta-potential, permeability flux, fouling resistance and color rejection from palm oil mill effluent (POME). Noticeably, the permeability flux, fouling resistance and color rejection improved with the increase in NMO loading. PVDF-PEG with 0.50 g-NMO loading displayed an outstanding performance with 198.35 L/m2·h, 61.33 L/m2·h and 74.65% of water flux, POME flux and color rejection from POME, respectively. More so, a remarkable fouling resistance were obtained such that the flux recovery, reversible fouling percentage and irreversible fouling percentage remains relatively steady at 90.98%, 61.39% and 7.68%, respectively, even after 3 cycles of continuous filtrations for a total period of 9 h. However, at excess loading of 0.75 and 1.25 g-NMO, deterioration in the flux and fouling resistance was observed. This was due to the agglomeration of nanoparticles within the matrix structure at the excessive loading.
    Matched MeSH terms: Magnesium; Magnesium Oxide
  13. Itliong JN, Villagracia ARC, Moreno JLV, Rojas KIM, Bernardo GPO, David MY, et al.
    Bioresour Technol, 2019 May;279:181-188.
    PMID: 30731357 DOI: 10.1016/j.biortech.2019.01.109
    This study aimed to investigate the transport mechanisms of ions during forward-osmosis-driven (FO-driven) dewatering of microalgae using molecular dynamics (MD) simulations. The dynamical and structural properties of ions in FO systems of varying NaCl or MgCl2 draw solution (DS) concentrations were calculated and correlated. Results indicate that FO systems with higher DS concentration caused ions to have lower hydration numbers and higher coordination numbers leading to lower diffusion coefficients. The higher hydration number of Mg2+ ions resulted in significantly lower ionic permeability as compared to Na+ ions at all concentrations (p = 0.002). The simulations also revealed that higher DS concentrations led to higher accumulation of ions in the membrane. This study provides insights on the proper selection of DS for FO systems.
    Matched MeSH terms: Magnesium; Magnesium Chloride
  14. Yary T, Aazami S, Soleimannejad K
    Biol Trace Elem Res, 2013 Mar;151(3):324-9.
    PMID: 23238611 DOI: 10.1007/s12011-012-9568-5
    Depressive symptoms are frequent in students and may lead to countless problems. Several hypotheses associate magnesium with depression because of the presence of this mineral in several enzymes, hormones, and neurotransmitters, which may play a key role in the pathological pathways of depression. The aim of this study was to assess whether magnesium intake could modulate depressive symptoms. A cross-sectional study was conducted on a convenience sample of 402 Iranian postgraduate students studying in Malaysia to assess the relationship between magnesium intake and depressive symptoms. The mean age of the participants was 32.54 ± 6.22 years. The results of the study demonstrated an inverse relationship between magnesium intake and depressive symptoms, which persisted even after adjustments for sex, age, body mass index, monthly expenses, close friends, living on campus, smoking (current and former), education, physical activity, and marital status.
    Matched MeSH terms: Magnesium/administration & dosage*; Magnesium/pharmacology*; Magnesium/therapeutic use
  15. Rahmani O, Highfield J, Junin R, Tyrer M, Pour AB
    Molecules, 2016 Mar 16;21(3):353.
    PMID: 26999082 DOI: 10.3390/molecules21030353
    In this work, the potential of CO₂ mineral carbonation of brucite (Mg(OH)2) derived from the Mount Tawai peridotite (forsterite based (Mg)₂SiO4) to produce thermodynamically stable magnesium carbonate (MgCO3) was evaluated. The effect of three main factors (reaction temperature, particle size, and water vapor) were investigated in a sequence of experiments consisting of aqueous acid leaching, evaporation to dryness of the slurry mass, and then gas-solid carbonation under pressurized CO2. The maximum amount of Mg converted to MgCO₃ is ~99%, which occurred at temperatures between 150 and 175 °C. It was also found that the reduction of particle size range from >200 to <75 µm enhanced the leaching rate significantly. In addition, the results showed the essential role of water vapor in promoting effective carbonation. By increasing water vapor concentration from 5 to 10 vol %, the mineral carbonation rate increased by 30%. This work has also numerically modeled the process by which CO₂ gas may be sequestered, by reaction with forsterite in the presence of moisture. In both experimental analysis and geochemical modeling, the results showed that the reaction is favored and of high yield; going almost to completion (within about one year) with the bulk of the carbon partitioning into magnesite and that very little remains in solution.
    Matched MeSH terms: Magnesium Hydroxide/chemistry; Magnesium Compounds/chemistry
  16. Mohd Nazry Salleh, Farizul Hafiz Kasim, Khairul Nizar Ismail, Che Mohd Ruzaidi Ghazali, Kamarudin Hussin, Saiful Azhar Saad, et al.
    Batu Reput’ is primary sediment mineral and abundantly found in Perlis. Perlis is one of the major producers of ‘Batu Reput’ in Malaysia that content large deposit of high-purity dolomite [CaMg (CO3)2]. Pure samples of ‘Batu Reput’ recently explored in the Koperasi Rimba Mas Padang Besar Quarry were investigated for their physical, chemical and mineralogical composition. SEM and XRD analysis methods were applied. The potential of ‘Batu Reput’ as a raw material in fertilizer production was investigated in this paper.
    Matched MeSH terms: Magnesium
  17. Khairudin NF, Sukri MFF, Khavarian M, Mohamed AR
    Beilstein J Nanotechnol, 2018;9:1162-1183.
    PMID: 29719767 DOI: 10.3762/bjnano.9.108
    Dry reforming of methane (DRM) is one of the more promising methods for syngas (synthetic gas) production and co-utilization of methane and carbon dioxide, which are the main greenhouse gases. Magnesium is commonly applied in a Ni-based catalyst in DRM to improve catalyst performance and inhibit carbon deposition. The aim of this review is to gain better insight into recent developments on the use of Mg as a support or promoter for DRM catalysts. Its high basicity and high thermal stability make Mg suitable for introduction into the highly endothermic reaction of DRM. The introduction of Mg as a support or promoter for Ni-based catalysts allows for good metal dispersion on the catalyst surface, which consequently facilitates high catalytic activity and low catalyst deactivation. The mechanism of DRM and carbon formation and reduction are reviewed. This work further explores how different constraints, such as the synthesis method, metal loading, pretreatment, and operating conditions, influence the dry reforming reactions and product yields. In this review, different strategies for enhancing catalytic activity and the effect of metal dispersion on Mg-containing oxide catalysts are highlighted.
    Matched MeSH terms: Magnesium
  18. Tan, H.Y., Cheah, S.K., Joanna, O.S.M., Azrin, M.A.
    Medicine & Health, 2020;15(2):164-174.
    Kajian ini dilaksanakan untuk membandingkan keberkesanan analgesia pre-emptif intravena magnesium sulfat menggunakan dos yang berbeza terhadap kesan pengawalan kesakitan berikutan pembedahan ginekologi. Seramai 56 orang pesakit dengan Indeks Jisim Badan (BMI)
    Matched MeSH terms: Magnesium
  19. Shunmugaperumal T, Ramamurthy S
    Drug Dev Ind Pharm, 2012 Mar 12.
    PMID: 22409156 DOI: 10.3109/03639045.2012.665459
    Magnesium fluoride (MgF(2)) nanoparticles-stabilized oil-in-water nanosized emulsion was prepared and assessed for its antiadherent and antibiofilm activities over glass coupons against pathogenic microorganisms like Escherichia coli and Staphylococcus aureus.
    Matched MeSH terms: Magnesium Compounds
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links