Displaying all 12 publications

Abstract:
Sort:
  1. Bidin, N.
    ASM Science Journal, 2008;2(2):179-182.
    MyJurnal
    The laser technology laboratory (LTL) of the Physics Department, University of Technology Malaysia was established in 1989 to support research and development activities. The laboratory provides activities for short- and long-term projects to serve final year undergraduate and post-graduate students in masters and PhD programmes.
  2. Lau PS, Bidin N, Krishnan G, Nassir Z, Bahktiar H
    J Cosmet Laser Ther, 2015 Apr;17(2):86-9.
    PMID: 25260140 DOI: 10.3109/14764172.2014.968587
    Low-energy laser irradiance at certain wavelengths is able to stimulate the tissue bio-reaction and enhance the healing process. Collagen deposition is one of the important aspects in healing process because it can increase the strength of the skin. This study was designed to examine the biophotonic effect of irradiance on collagen production of diabetic wound in rat model. The tensile strength of skin was employed as a parameter to describe the wound. Diabetic rat models were induced by streptozotocin via intravenous injection. Skin-breaking strength was measured using an Instron tensile test machine. The experimental animals were treated with 808-nm diode laser at two different powers-0.1 and 0.5 W/cm(2)-and 30, 60, and 120 s for each session. The tensile strength was optimized after treated with high-power diode laser. The photostimulation effect was revealed by accelerated healing process and enhanced tensile strength of wound. Laser photostimulation on tensile strength in diabetic wound suggests that such therapy facilitates collagen production in diabetic wound healing.
  3. Norsyuhada W, Shukri WM, Bidin N, Islam S, Krishnan G
    J Nanosci Nanotechnol, 2018 Jul 01;18(7):4841-4851.
    PMID: 29442664 DOI: 10.1166/jnn.2018.15358
    Au-Ag alloy nanoparticles are physically synthesized using rapid, simple and efficient Q-switched Nd:YAG pulsed laser ablation in liquid technique (PLAL). Au and Ag colloidal solutions are separately prepared by 1064 nm laser ablation of metallic target (gold and silver) which is immersed in deionized water. Au-Ag alloy nanoparticles are prepared by irradiating the mixture of Au and Ag colloidal solutions with 532 nm of second harmonic wavelength of Nd:YAG laser at three different ratio, 3:1, 1:1 and 1:3 within different exposure times. The three of plasmon absorption bands of Au-Ag nanoparticles are shifted linearly to the lower wavelength [499.67 nm (3:1), 481.25 nm (1:1), 467.91 nm (1:3)], as compared to plasmon absorption spectra of pure Au (520 nm) and Ag (400 nm). Moreover, the change in colors are also observed from red (Au) and yellow (Ag) to orange, brown and green color due to the Au-Ag alloy formations, respectively. Transmission electron microscopy shows the Ag shell around the inner core of Au spherical metal with broad size distribution due to the three different volume ratio, respectively (1.7 nm, 0.7 nm, 1.4 nm). Energy-dispersive X-ray spectroscopy analysis confirms the presence of Au and Ag elements in Au-Ag alloy nanoparticles without any contaminations. Attenuated total reflectance fourier transform infrared spectroscopy analysis also confirms the homogenous Au-Ag alloys chemical bonding.
  4. Leaw WL, Mamat CR, Triwahyono S, Jalil AA, Bidin N
    J Colloid Interface Sci, 2016 Aug 10;483:41-48.
    PMID: 27552412 DOI: 10.1016/j.jcis.2016.08.020
    A liquid crystal physical gel was prepared by the self-assembly of cholesteryl stearate in a nematic liquid crystal, 4-cyano-4'-pentylbiphenyl. The electro-optical properties were tuned by varying the gelator concentration and the gelation conditions. Polarized optical microscopy revealed that cholesteric cholesteryl stearate induced chiral nematic phase in 4-cyano-4'-pentylbiphenyl during the gelation process. As a result, a plate-like gel structure consisting of spherical micropores was formed, as observed by scanning electron microscopy. Electron spin resonance spectroscopy showed that the liquid crystal director orientations in these macrophase-separated structures were massively randomised. For these reasons, the liquid crystal physical gel generated a strong light scattering effect. For 48.0wt% cholesteryl stearate gelled 4-cyano-4'-pentylbiphenyl, the turbid appearance could be switched to a transparent state using a 5.0V alternating current. The response time was about 3.7μs. This liquid crystal physical gel has potential for use in light scattering electro-optical displays.
  5. Lau P, Bidin N, Krishnan G, AnaybBaleg SM, Sum MB, Bakhtiar H, et al.
    PMID: 26313856 DOI: 10.1016/j.jphotobiol.2015.08.009
    The photobiostimulation effects of near infrared 808 nm diode laser irradiance on diabetic wound were investigated. 120 rats were induced with diabetes by streptozotocin injection. Full thickness punch wounds of 6mm diameter were created on the dorsal part of the rats. All rats were randomly distributed into four groups; one group served as control group, whereas three groups were stimulated daily with unchanged energy density dose of 5 J/cm(2) with different power density, which were 0.1 W/cm(2), 0.2 W/cm(2) and 0.3 W/cm(2) with different exposure duration of 50s, 25s and 17s, respectively. Ten rats from each group were sacrificed on day 3, 6 and 9, respectively. Skin tissues were removed for histological purpose. The contraction of wound was found optimized after exposure with 0.1 W/cm(2). Based on the histological evidence, laser therapy has shown able to promote wound repair through enhanced epithelialization and collagen fiber synthesis. Generally, irradiated groups were advanced in terms of healing than non-irradiated group.
  6. Baleg SM, Bidin N, Suan LP, Ahmad MF, Krishnan G, Johari AR, et al.
    J Cosmet Dermatol, 2015 Sep;14(3):246-53.
    PMID: 25817596 DOI: 10.1111/jocd.12142
    The aim of this study was to evaluate the effects of multiple pulses on the depth of injury caused by CO2 laser in an in vivo rat model.
  7. Wan Mohd Shukri WN, Bakhtiar H, Islam S, Bidin N, Baba S, Hamdan S, et al.
    Biomed Environ Sci, 2021 Feb 20;34(2):119-123.
    PMID: 33685570 DOI: 10.3967/bes2021.017
  8. Lau P, Bidin N, Islam S, Shukri WNBWM, Zakaria N, Musa N, et al.
    Lasers Surg Med, 2017 04;49(4):380-386.
    PMID: 27859389 DOI: 10.1002/lsm.22614
    BACKGROUND AND OBJECTIVE: The aim of this study is to investigate the effect of gold nanoparticles (AuNPs) in photobiomodulation therapy (PBMT) on wound healing process.

    MATERIALS AND METHODS: AuNPs are synthesized by Q-switched Nd:YAG laser ablation technique. Cutaneous wound are induced on 45 Sprague Dawley rats on its dorsal part and then randomly divided into three groups. One group serves as non-treatment group (GC) and another two groups are subjected to AuNPs with and without PBMT. About 808 nm diode laser with output power of 100 mW is used as a light source for PBMT. The treatment was carried out daily with exposure duration of 50 seconds and total fluence of 5 J/cm2 . Wound area is monitored for 9 consecutive days using a digital camera, and histological examination is performed at 3rd, 6th, and 9th day through hematoxylin and eosin stain as well as Masson's trichrome stain.

    RESULTS: The group of rats subjected to AuNPs with PBMT shows significantly accelerated wound closure compared to other groups. Histological results indicate that AuNPs and PBMT group is more effective in stimulating angiogenesis and triggers inflammatory response at early stage.

    CONCLUSION: The application of AuNPs in PBMT has potential to accelerate wound healing due to enhanced epithelialization, collagen deposition and fast vascularization. Lasers Surg. Med. 49:380-386, 2017. © 2016 Wiley Periodicals, Inc.

  9. Imrigha NAA, Bidin N, Lau PS, Musa N, Zakaria N, Krishnan G
    J Biophotonics, 2017 Oct;10(10):1287-1291.
    PMID: 28464516 DOI: 10.1002/jbio.201600295
    Q-switched Nd: YAG laser is the most effective laser for tattoo removal. Photobiomodulation (PBM) therapy is an alternative method applied to accelerate the wound healing. This paper investigated the effects of PBM therapy using 808 nm diode laser on tattooed skin after laser tattoo removal. Forty-five rats were selected and tattooed with black ink on their dorsal, and then distributed into three groups. G0 was received non-laser irradiation. G1 was treated by laser tattoo removal using 1064 nm with energy density of 3.4 J/cm2 without PBM therapy, while G2 was treated daily with PBM therapy using 808 nm diode laser of 5 J/cm2 after a single session of laser tattoo removal. The effects of tattoo removal and healing progress of the wound were analyzed using histological studies. Findings showed 808 nm laser promotes the healing process through enhancing epithelialization and collagen deposition. Moreover, PBM therapy stimulated immune cells to improve phagocytosis process for removing the tattoo ink fragments effectively. The PBM therapy treated group was capable of improving the healing process and increasing the quality of skin following the laser tattoo removal. It was also found that stimulation of cellular function by PBM therapy increased tattoo clearance efficiency.
  10. Anayb Baleg SM, Bidin N, Suan LP, Sidi Ahmad MF, Krishnan G, Johari AR, et al.
    Photochem Photobiol, 2015 Jan-Feb;91(1):134-8.
    PMID: 25327511 DOI: 10.1111/php.12369
    Skin is the most important organ in our body, as it protects us from external environmental effects. Study the ability of the skin to stretch and the histological examinations of irradiated tissues have significant values in scientific and medical applications. Only a few studies have been done to study the correlation between epidermis ablation and the changes that occur at dermal levels when using dual lasers in ablative resurfacing mode. The aim of this work is to determine this correlation and to estimate the effects of multiple pulses on induced collagen remodeling and the strength of skin exposed with dual lasers in an in vivo rat model. All laser exposures led to mark improvement in the skin's strength compared to their own controls. The histological investigation indicated that there was a thickness loss in the epidermis layer with the induction of deep collagen coagulation in the dermis layer as the dual laser pulses increased. Additionally, more collagen fibers were remolded in the treated samples by dual wavelengths. We conclude that by combining dual lasers with multiple pulses targeted at not only the epidermis layer of the skin, it could also induce some heat diffusion in the dermis layer which causes more coagulation of collagen fibers. The tensile results confirmed by our histological data demonstrate that the strength of irradiated skin with dual wavelengths increased more than using both lasers separately on the skin tissue since more collagen is induced.
  11. Zakaria MH, Ramaiya SD, Bidin N, Syed NNF, Bujang JS
    PeerJ, 2023;11:e15496.
    PMID: 37456903 DOI: 10.7717/peerj.15496
    BACKGROUND: The social acceptability of wild freshwater macrophytes as locally consumed vegetables is widespread. Freshwater macrophytes have several uses; for example, they can be used as food for humans. This study determined the proximate composition and mineral content of three freshwater macrophyte species, i.e., Eichhornia crassipes, Limnocharis flava, and Neptunia oleracea.

    METHODS: Young shoots of E. crassipes, L. flava, and N. oleracea were collected from shallow channels of Puchong (3°00'11.89″N, 101°42'43.12″E), Ladang 10, Universiti Putra Malaysia (2°58'44.41″N, 101°42'44.45″E), and Kampung Alur Selibong, Langgar (06°5'50.9″N, 100°26'49.8″E), Kedah, Peninsular Malaysia. The nutritional values of these macrophytes were analysed by using a standard protocol from the Association of Official Analytical Chemists. Eight replicates of E. crassipes and L. flava and four replicates of N. oleracea were used for the subsequent analyses.

    RESULTS: In the proximate analysis, N. oleracea possessed the highest percentage of crude protein (29.61%) and energy content (4,269.65 cal g-1), whereas L. flava had the highest percentage of crude fat (5.75%) and ash (18.31%). The proximate composition trend for each species was different; specifically, all of the species possessed more carbohydrates and fewer crude lipids. All of the species demonstrated a similar mineral trend, with high nitrogen and potassium and lower copper contents. Nitrogen and potassium levels ranged from 12,380-40,380 mg kg-1 and from 11,212-33,276 mg kg-1, respectively, and copper levels ranged from 16-27 mg kg-1. The results showed that all three plant species, i.e., E. crassipes, N. oleracea, and L. flava are plant-based sources of macro- and micronutrient beneficial supplements for human consumption.

  12. Pillay DI, Ghazali RJ, Manaf NH, Abdullah AH, Bakar AA, Salikin F, et al.
    Int J Health Care Qual Assur, 2011;24(7):506-22.
    PMID: 22204085
    This is a national study which aims to determine the average waiting time in Malaysian public hospitals and to gauge the level of patient satisfaction with the waiting time. It also aims to identify factors perceived by healthcare providers which contribute to the waiting time problem.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links