METHODS: We identified suicide data from official public-sector sources for countries/areas-within-countries, searching websites and academic literature and contacting data custodians and authors as necessary. We sent our first data request on 22nd June 2021 and stopped collecting data on 31st October 2021. We used interrupted time series (ITS) analyses to model the association between the pandemic's emergence and total suicides and suicides by sex-, age- and sex-by-age in each country/area-within-country. We compared the observed and expected numbers of suicides in the pandemic's first nine and first 10-15 months and used meta-regression to explore sources of variation.
FINDINGS: We sourced data from 33 countries (24 high-income, six upper-middle-income, three lower-middle-income; 25 with whole-country data, 12 with data for area(s)-within-the-country, four with both). There was no evidence of greater-than-expected numbers of suicides in the majority of countries/areas-within-countries in any analysis; more commonly, there was evidence of lower-than-expected numbers. Certain sex, age and sex-by-age groups stood out as potentially concerning, but these were not consistent across countries/areas-within-countries. In the meta-regression, different patterns were not explained by countries' COVID-19 mortality rate, stringency of public health response, economic support level, or presence of a national suicide prevention strategy. Nor were they explained by countries' income level, although the meta-regression only included data from high-income and upper-middle-income countries, and there were suggestions from the ITS analyses that lower-middle-income countries fared less well.
INTERPRETATION: Although there are some countries/areas-within-countries where overall suicide numbers and numbers for certain sex- and age-based groups are greater-than-expected, these countries/areas-within-countries are in the minority. Any upward movement in suicide numbers in any place or group is concerning, and we need to remain alert to and respond to changes as the pandemic and its mental health and economic consequences continue.
FUNDING: None.
OBJECTIVE: To estimate mortality due to firearm injury deaths from 1990 to 2016 in 195 countries and territories.
DESIGN, SETTING, AND PARTICIPANTS: This study used deidentified aggregated data including 13 812 location-years of vital registration data to generate estimates of levels and rates of death by age-sex-year-location. The proportion of suicides in which a firearm was the lethal means was combined with an estimate of per capita gun ownership in a revised proxy measure used to evaluate the relationship between availability or access to firearms and firearm injury deaths.
EXPOSURES: Firearm ownership and access.
MAIN OUTCOMES AND MEASURES: Cause-specific deaths by age, sex, location, and year.
RESULTS: Worldwide, it was estimated that 251 000 (95% uncertainty interval [UI], 195 000-276 000) people died from firearm injuries in 2016, with 6 countries (Brazil, United States, Mexico, Colombia, Venezuela, and Guatemala) accounting for 50.5% (95% UI, 42.2%-54.8%) of those deaths. In 1990, there were an estimated 209 000 (95% UI, 172 000 to 235 000) deaths from firearm injuries. Globally, the majority of firearm injury deaths in 2016 were homicides (64.0% [95% UI, 54.2%-68.0%]; absolute value, 161 000 deaths [95% UI, 107 000-182 000]); additionally, 27% were firearm suicide deaths (67 500 [95% UI, 55 400-84 100]) and 9% were unintentional firearm deaths (23 000 [95% UI, 18 200-24 800]). From 1990 to 2016, there was no significant decrease in the estimated global age-standardized firearm homicide rate (-0.2% [95% UI, -0.8% to 0.2%]). Firearm suicide rates decreased globally at an annualized rate of 1.6% (95% UI, 1.1-2.0), but in 124 of 195 countries and territories included in this study, these levels were either constant or significant increases were estimated. There was an annualized decrease of 0.9% (95% UI, 0.5%-1.3%) in the global rate of age-standardized firearm deaths from 1990 to 2016. Aggregate firearm injury deaths in 2016 were highest among persons aged 20 to 24 years (for men, an estimated 34 700 deaths [95% UI, 24 900-39 700] and for women, an estimated 3580 deaths [95% UI, 2810-4210]). Estimates of the number of firearms by country were associated with higher rates of firearm suicide (P
METHODS: Injury mortality was estimated using the GBD mortality database, corrections for garbage coding and CODEm-the cause of death ensemble modelling tool. Morbidity estimation was based on surveys and inpatient and outpatient data sets for 30 cause-of-injury with 47 nature-of-injury categories each. The Socio-demographic Index (SDI) is a composite indicator that includes lagged income per capita, average educational attainment over age 15 years and total fertility rate.
RESULTS: For many causes of injury, age-standardised DALY rates declined with increasing SDI, although road injury, interpersonal violence and self-harm did not follow this pattern. Particularly for self-harm opposing patterns were observed in regions with similar SDI levels. For road injuries, this effect was less pronounced.
CONCLUSIONS: The overall global pattern is that of declining injury burden with increasing SDI. However, not all injuries follow this pattern, which suggests multiple underlying mechanisms influencing injury DALYs. There is a need for a detailed understanding of these patterns to help to inform national and global efforts to address injury-related health outcomes across the development spectrum.
METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced.
RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes.
CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future.
METHODS: We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs).
FINDINGS: In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505).
INTERPRETATION: Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.