Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Malbenia John M, Benettayeb A, Belkacem M, Ruvimbo Mitchel C, Hadj Brahim M, Benettayeb I, et al.
    Chemosphere, 2024 Apr 20.
    PMID: 38648988 DOI: 10.1016/j.chemosphere.2024.142051
    Water purification using adsorption is a crucial process for maintaining human life and preserving the environment. Batch and dynamic adsorption modes are two types of water purification processes that are commonly used in various countries due to their simplicity and feasibility on an industrial scale. However, it is important to understand the advantages and limitations of these two adsorption modes in industrial applications. Also, the possibility of using batch mode in industrial scale was scrutinized, along with the necessity of using dynamic mode in such applications. In addition, the reasons for the necessity of performing batch adsorption studies before starting the treatment on an industrial scale were mentioned and discussed. In fact, this review article attempts to throw light on these subjects by comparing the biosorption efficiency of some metals on utilized biosorbents, using both batch and fixed-bed (column) adsorption modes. The comparison is based on the effectiveness of the two processes and the mechanisms involved in the treatment. Parameters such as biosorption capacity, percentage removal, and isotherm models for both batch and column (fixed bed) studies are compared. The article also explains thermodynamic and kinetic models for batch adsorption and discusses breakthrough evaluations in adsorptive column systems. The review highlights the benefits of using convenient batch-wise biosorption in lab-scale studies and the key advantages of column biosorption in industrial applications.
  2. Chook SW, Chia CH, Zakaria S, Ayob MK, Chee KL, Huang NM, et al.
    Nanoscale Res Lett, 2012;7(1):541.
    PMID: 23020815 DOI: 10.1186/1556-276X-7-541
    Silver nanoparticles and silver-graphene oxide nanocomposites were fabricated using a rapid and green microwave irradiation synthesis method. Silver nanoparticles with narrow size distribution were formed under microwave irradiation for both samples. The silver nanoparticles were distributed randomly on the surface of graphene oxide. The Fourier transform infrared and thermogravimetry analysis results showed that the graphene oxide for the AgNP-graphene oxide (AgGO) sample was partially reduced during the in situ synthesis of silver nanoparticles. Both silver nanoparticles and AgGO nanocomposites exhibited stronger antibacterial properties against Gram-negative bacteria (Salmonella typhi and Escherichia coli) than against Gram-positive bacteria (Staphyloccocus aureus and Staphyloccocus epidermidis). The AgGO nanocomposites consisting of approximately 40 wt.% silver can achieve antibacterial performance comparable to that of neat silver nanoparticles.
  3. Sajab MS, Chia CH, Zakaria S, Khiew PS
    Bioresour Technol, 2013 Jan;128:571-7.
    PMID: 23211482 DOI: 10.1016/j.biortech.2012.11.010
    Oil palm empty fruit bunch (EFB) fibers were employed to remove dyes from aqueous solutions via adsorption approaches. The EFB fibers were modified using citric acid (CA) and polyethylenimine (PEI) to produce anionic and cationic adsorbents, respectively. The CA modified EFB fibers (CA-EFB) and PEI-modified EFB fibers (PEI-EFB) were used to study the efficiency in removing cationic methylene blue (MB) and anionic phenol red (PR) from aqueous solutions, respectively, at different pHs, temperatures and initial dye concentrations. The adsorption data for MB on the CA-EFB fitted the Langmuir isotherm, while the adsorption of PR on the PEI-EFB fitted the Freundlich isotherm, suggesting a monolayer and heterogeneous adsorption behavior of the adsorption processes, respectively. Both modified fibers can be regenerated up to seven adsorption/desorption cycles while still providing as least 70% of the initial adsorption capacity.
  4. Salleh KM, Zakaria S, Sajab MS, Gan S, Chia CH, Jaafar SNS, et al.
    Int J Biol Macromol, 2018 Oct 15;118(Pt B):1422-1430.
    PMID: 29964115 DOI: 10.1016/j.ijbiomac.2018.06.159
    Dissolved oil palm empty fruit bunch (EFB) cellulose in NaOH/urea solvent was mixed with sodium carboxymethylcellulose (NaCMC) to form a green regenerated superabsorbent hydrogel. The effect of concentration of epichlorohydrin (ECH) as the crosslinker on the formation, physical, and chemical properties of hydrogel was studied. Rapid formation and higher gel content of hydrogel were observed at 10% concentration of ECH. The superabsorbent hydrogel was successfully fabricated in this study with the swelling ability >100,000%. Hydrogel with higher concentration of ECH showed opposite trend by having higher superabsorbent property than that of lower concentration. The covalent bond of COC was observed with Attenuated total reflectance fourier transform infrared (ATR-FT-IR) spectroscopy to confirm the occurrence of crosslinking. The physical and chemical properties of hydrogel were affected by swelling phenomenon. Hydrogel with higher degree of swelling exhibited lower moisture retention and higher transparency. Moreover, the weight of the superabsorbent hydrogel increased with the decrement of pH value of external media (distilled water). This study provided substantial information on the effect of different percentage of ECH as crosslinker on hydrogel basic properties. Furthermore, this study affords correlation of many essential driving forces that affected hydrogel superabsorbent property.
  5. Chin SX, Lau KS, Zakaria S, Chia CH, Wongchoosuk C
    Polymers (Basel), 2022 Nov 27;14(23).
    PMID: 36501560 DOI: 10.3390/polym14235165
    Wastewater generated from industries seriously impacts the environment. Conventional biological and physiochemical treatment methods for wastewater containing organic molecules have some limitations. Therefore, identifying other alternative methods or processes that are more suitable to degrade organic molecules and lower chemical oxygen demand (COD) in wastewater is necessary. Heterogeneous Fenton processes and persulfate (PS) oxidation are advanced oxidation processes (AOPs) that degrade organic pollutants via reactive radical species. Therefore, in this study, limonite powder was incorporated into porous regenerated chitosan fibers and further used as a heterogeneous catalyst to decompose methylene blue (MB) via sulfate radical-based AOPs. Limonite was used as a heterogeneous catalyst in this process to generate the persulfate radicals (SO4-·) that initiate the decolorization process. Limonite-chitosan fibers were produced to effectively recover the limonite powder so that the catalyst can be reused repeatedly. The formation of limonite-chitosan fibers viewed under a field emission scanning electron microscope (FESEM) showed that the limonite powder was well distributed in both the surface and cross-section area. The effectiveness of limonite-chitosan fibers as a catalyst under PS activation achieved an MB decolorization of 78% after 14 min. The stability and reusability of chitosan-limonite fibers were evaluated and measured in cycles 1 to 10 under optimal conditions. After 10 cycles of repeated use, the limonite-chitosan fiber maintained its performance up to 86%, revealing that limonite-containing chitosan fibers are a promising reusable catalyst material.
  6. Benettayeb A, Seihoub FZ, Pal P, Ghosh S, Usman M, Chia CH, et al.
    Nanomaterials (Basel), 2023 Jan 21;13(3).
    PMID: 36770407 DOI: 10.3390/nano13030447
    Adsorption is the most widely used technique for advanced wastewater treatment. The preparation and application of natural renewable and environmentally friendly materials makes this process easier and more profitable. Chitosan is often used as an effective biomaterial in the adsorption world because of its numerous functional applications. Chitosan is one of the most suitable and functionally flexible adsorbents because it contains hydroxyl (-OH) and amine (-NH2) groups. The adsorption capacity and selectivity of chitosan can be further improved by introducing additional functions into its basic structure. Owing to its unique surface properties and adsorption ability of chitosan, the development and application of chitosan nanomaterials has gained significant attention. Here, recent research on chitosan nanoparticles is critically reviewed by comparing various methods for their synthesis with particular emphasis on the role of experimental conditions, limitations, and applications in water and wastewater treatment. The recovery of pollutants using magnetic nanoparticles is an important treatment process that has contributed to additional development and sustainable growth. The application of such nanoparticles in the recovery metals, which demonstrates a "close loop technology" in the current scenarios, is also presented in this review.
  7. Sajab MS, Chia CH, Zakaria S, Jani SM, Ayob MK, Chee KL, et al.
    Bioresour Technol, 2011 Aug;102(15):7237-43.
    PMID: 21620692 DOI: 10.1016/j.biortech.2011.05.011
    Chemically modified kenaf core fibres were prepared via esterification in the presence of citric acid (CA). The adsorption kinetics and isotherm studies were carried out under different conditions to examine the adsorption efficiency of CA-treated kenaf core fibres towards methylene blue (MB). The adsorption capacity of the kenaf core fibres increased significantly after the citric acid treatment. The values of the correlation coefficients indicated that the Langmuir isotherm fitted the experimental data better than the Freundlich isotherm. The maximum adsorption capacity of the CA-treated kenaf core fibres was found to be 131.6mg/g at 60°C. Kinetic models, pseudo-first-order, pseudo-second-order and intraparticle diffusion, were employed to describe the adsorption mechanism. The kinetic data were found to fit pseudo-second-order model equation as compared to pseudo-first-order model. The adsorption of MB onto the CA-treated kenaf core fibres was spontaneous and endothermic.
  8. Fan SP, Zakaria S, Chia CH, Jamaluddin F, Nabihah S, Liew TK, et al.
    Bioresour Technol, 2011 Feb;102(3):3521-6.
    PMID: 21123058 DOI: 10.1016/j.biortech.2010.11.046
    Solvolysis of oil palm empty fruit bunches (EFB) fibres using different solvents (acetone, ethylene glycol (EG), ethanol, water and toluene) were carried out using an autoclave at 275°C for 60 min. The solvent efficiency in term of conversion yield was found to be: EG>water>ethanol>acetone>toluene. The liquid products and residue obtained were analyzed using Fourier transform infrared spectroscopy (FTIR) and gas chromatography/mass selectivity. The obtained results showed that the chemical properties of the oil product were significantly affected by the type of solvent used for the solvolysis process. The higher heating value (HHV) of oil products obtained using ethanol is ∼29.42 MJ/kg, which is the highest among the oil products produced using different solvents. Water, ethanol and toluene yield major phenolic compounds. While EG favors the formation of alcohol compounds and acetone yields ketone and aldehyde compounds.
  9. Hashimi AS, Nohan MANM, Chin SX, Khiew PS, Zakaria S, Chia CH
    Nanomaterials (Basel), 2020 Jun 12;10(6).
    PMID: 32545513 DOI: 10.3390/nano10061153
    : Hydrogen (H2) is a clean energy carrier which can help to solve environmental issues with the depletion of fossil fuels. Sodium borohydride (NaBH4) is a promising candidate material for solid state hydrogen storage due to its huge hydrogen storage capacity and nontoxicity. However, the hydrolysis of NaBH4 usually requires expensive noble metal catalysts for a high H2 generation rate (HGR). Here, we synthesized high-aspect ratio copper nanowires (CuNWs) using a hydrothermal method and used them as the catalyst for the hydrolysis of NaBH4 to produce H2. The catalytic H2 generation demonstrated that 0.1 ng of CuNWs could achieve the highest volume of H2 gas in 240 min. The as-prepared CuNWs exhibited remarkable catalytic performance: the HGR of this study (2.7 × 1010 mL min-1 g-1) is ~3.27 × 107 times higher than a previous study on a Cu-based catalyst. Furthermore, a low activation energy (Ea) of 42.48 kJ mol-1 was calculated. Next, the retreated CuNWs showed an outstanding and stable performance for five consecutive cycles. Moreover, consistent catalytic activity was observed when the same CuNWs strip was used for four consecutive weeks. Based on the results obtained, we have shown that CuNWs can be a plausible candidate for the replacement of a costly catalyst for H2 generation.
  10. Thanikachalam PV, Ramamurthy S, Wong ZW, Koo BJ, Wong JY, Abdullah MF, et al.
    Drug Discov Today, 2018 Mar;23(3):460-480.
    PMID: 29107764 DOI: 10.1016/j.drudis.2017.10.020
    MicroRNAs (miRNAs) are small, noncoding RNAs regulating gene expression at the post-translational level. miRNA-based therapeutic agents are important because of the functionality of miRNAs in regulating lipid and glucose metabolism and their role in the pathogenesis of metabolic disorders such as diabetes and obesity, where dysregulation leads to disease; they are also important in angiogenesis. miRNAs additionally serve as biomarkers in the diagnosis, prognosis and risk assessment of disease and in monitoring the response to treatment. Here, we provide a brief overview of progress in miRNA-based therapeutics in the preclinical and clinical setting and highlight the novel outcomes and opportunities in the diagnosis and treatment of metabolic conditions. In addition, we present the role of miRNAs in stem cell therapy which could have great potential in regenerative medicine.
  11. Pua FL, Fang Z, Zakaria S, Guo F, Chia CH
    PMID: 22145867 DOI: 10.1186/1754-6834-4-56
    Solid acid catalyst was prepared from Kraft lignin by chemical activation with phosphoric acid, pyrolysis and sulfuric acid. This catalyst had high acid density as characterized by scanning electron microscope (SEM), energy-dispersive x-ray spectrometry (EDX) and Brunauer, Emmett, and Teller (BET) method analyses. It was further used to catalyze the esterification of oleic acid and one-step conversion of non-pretreated Jatropha oil to biodiesel. The effects of catalyst loading, reaction temperature and oil-to-methanol molar ratio, on the catalytic activity of the esterification were investigated.
  12. Padzil FN, Zakaria S, Chia CH, Jaafar SN, Kaco H, Gan S, et al.
    Carbohydr Polym, 2015 Jun 25;124:164-71.
    PMID: 25839807 DOI: 10.1016/j.carbpol.2015.02.013
    Bleached kenaf core pulps (BKC) were hydrolyzed in H2SO4 (0.5M) at different time (0min to 90min) at room temperature. After the hydrolysis process, the viscosity average molecular weight (Mŋ) for BKC sample has reduced from 14.5×10(4) to 2.55×10(4). The hydrolyzed BKC was then dissolved in NaOH:urea:water and in LiOH:urea:water mixed solvent at the ratio of 7:12:81 and 4.6:15:80.4, respectively. The increased in hydrolysis time has decreased Mŋ of cellulose leading to easy dissolution process. Higher porosity and transparency with lower crystallinity index (CrI) of regenerated membrane produced can be achieved as the Mŋ reduced. The properties of membrane were observed through FESEM, UV-vis spectrophotometer and XRD. This study has proven that acid hydrolysis has reduced the Mŋ of cellulose, thus, enhanced the properties of regenerated membrane produced with assisted by alkaline/urea system.
  13. Gan S, Zakaria S, Chia CH, Padzil FN, Ng P
    Carbohydr Polym, 2015 Jan 22;115:62-8.
    PMID: 25439869 DOI: 10.1016/j.carbpol.2014.08.093
    The hydrothermal pretreatment on kenaf core pulp (KCP) was carried out using an autoclave heated in a oil bath at 140°C for 0.5/1/3/5h. The hydrothermal pretreated kenaf (HPK) was dissolved in a LiOH/urea aqueous solution and subsequently used to produce cellulose membrane and hydrogel. The effects of hydrothermal pretreatment time on solubility, viscosity, crystallinity and morphology of the cellulose membrane and hydrogel were investigated. The hydrothermal pretreatment leads to higher cellulose solubility and higher viscosity of the cellulose solution. The formation of cellulose II and crystallinity index of the cellulose membrane and hydrogel were examined by X-ray diffraction (XRD). The pore size of the cellulose membrane and hydrogel displayed an upward trend with respect to the hydrothermal pretreatment period observed under a field emission scanning electron microscope (FESEM). This finding provides an efficient procedure to improve the solubility, viscosity and properties of regenerated cellulose products.
  14. Lau SC, Lim HN, Basri M, Fard Masoumi HR, Ahmad Tajudin A, Huang NM, et al.
    PLoS One, 2014;9(8):e104695.
    PMID: 25127038 DOI: 10.1371/journal.pone.0104695
    In this work, lipase from Candida rugosa was immobilized onto chitosan/graphene oxide beads. This was to provide an enzyme-immobilizing carrier with excellent enzyme immobilization activity for an enzyme group requiring hydrophilicity on the immobilizing carrier. In addition, this work involved a process for the preparation of an enzymatically active product insoluble in a reaction medium consisting of lauric acid and oleyl alcohol as reactants and hexane as a solvent. This product enabled the stability of the enzyme under the working conditions and allowed the enzyme to be readily isolated from the support. In particular, this meant that an enzymatic reaction could be stopped by the simple mechanical separation of the "insoluble" enzyme from the reaction medium. Chitosan was incorporated with graphene oxide because the latter was able to enhance the physical strength of the chitosan beads by its superior mechanical integrity and low thermal conductivity. The X-ray diffraction pattern showed that the graphene oxide was successfully embedded within the structure of the chitosan. Further, the lipase incorporation on the beads was confirmed by a thermo-gravimetric analysis. The lipase immobilization on the beads involved the functionalization with coupling agents, N-hydroxysulfosuccinimide sodium (NHS) and 1-ethyl-(3-dimethylaminopropyl) carbodiimide (EDC), and it possessed a high enzyme activity of 64 U. The overall esterification conversion of the prepared product was 78% at 60 °C, and it attained conversions of 98% and 88% with commercially available lipozyme and novozyme, respectively, under similar experimental conditions.
  15. Muthoosamy K, Bai RG, Abubakar IB, Sudheer SM, Lim HN, Loh HS, et al.
    Int J Nanomedicine, 2015;10:1505-19.
    PMID: 25759577 DOI: 10.2147/IJN.S75213
    PURPOSE: A simple, one-pot strategy was used to synthesize reduced graphene oxide (RGO) nanosheets by utilizing an easily available over-the-counter medicinal and edible mushroom, Ganoderma lucidum.

    METHODS: The mushroom was boiled in hot water to liberate the polysaccharides, the extract of which was then used directly for the reduction of graphene oxide. The abundance of polysaccharides present in the mushroom serves as a good reducing agent. The proposed strategy evades the use of harmful and expensive chemicals and avoids the typical tedious reaction methods.

    RESULTS: More importantly, the mushroom extract can be easily separated from the product without generating any residual byproducts and can be reused at least three times with good conversion efficiency (75%). It was readily dispersible in water without the need of ultrasonication or any surfactants; whereas 5 minutes of ultrasonication with various solvents produced RGO which was stable for the tested period of 1 year. Based on electrochemical measurements, the followed method did not jeopardize RGO's electrical conductivity. Moreover, the obtained RGO was highly biocompatible to not only colon (HT-29) and brain (U87MG) cancer cells, but was also viable towards normal cells (MRC-5).

    CONCLUSION: Besides being eco-friendly, this mushroom based approach is easily scalable and demonstrates remarkable RGO stability and biocompatibility, even without any form of functionalization.

  16. Lim HN, Huang NM, Lim SS, Harrison I, Chia CH
    Int J Nanomedicine, 2011;6:1817-23.
    PMID: 21931479 DOI: 10.2147/IJN.S23392
    Three-dimensional assembly of graphene hydrogel is rapidly attracting the interest of researchers because of its wide range of applications in energy storage, electronics, electrochemistry, and waste water treatment. Information on the use of graphene hydrogel for biological purposes is lacking, so we conducted a preliminary study to determine the suitability of graphene hydrogel as a substrate for cell growth, which could potentially be used as building blocks for biomolecules and tissue engineering applications.
  17. Chin SX, Lau KS, Ginting RT, Tan ST, Khiew PS, Chia CH, et al.
    Polymers (Basel), 2023 Sep 14;15(18).
    PMID: 37765612 DOI: 10.3390/polym15183758
    Wearable energy storage devices require high mechanical stability and high-capacitance flexible electrodes. In this study, we design a flexible supercapacitor electrode consisting of 1-dimensional carbon nanotubes (CNT), cellulose nanofibrils (CNF), and manganese dioxide nanowires (MnO2 NWs). The flexible and conductive CNT/CNF-MnO2 NWs suspension was first prepared via ultrasonic dispersion approach, followed by vacuum filtration and hot press to form the composite paper electrode. The morphological studies show entanglement between CNT and CNF, which supports the mechanical properties of the composite. The CNT/CNF-MnO2 NWs electrode exhibits lower resistance when subjected to various bending angles (-120-+120°) compared to the CNT/CNF electrode. In addition, the solid-state supercapacitor also shows a high energy density of 38 μWh cm-2 and capacitance retention of 83.2% after 5000 cycles.
  18. Chang BY, Huang NM, An'amt MN, Marlinda AR, Norazriena Y, Muhamad MR, et al.
    Int J Nanomedicine, 2012;7:3379-87.
    PMID: 22848166 DOI: 10.2147/IJN.S28189
    A simple single-stage approach, based on the hydrothermal technique, has been introduced to synthesize reduced graphene oxide/titanium dioxide nanocomposites. The titanium dioxide nanoparticles are formed at the same time as the graphene oxide is reduced to graphene. The triethanolamine used in the process has two roles. It acts as a reducing agent for the graphene oxide as well as a capping agent, allowing the formation of titanium dioxide nanoparticles with a narrow size distribution (~20 nm). Transmission electron micrographs show that the nanoparticles are uniformly distributed on the reduced graphene oxide nanosheet. Thermogravimetric analysis shows the nanocomposites have an enhanced thermal stability over the original components. The potential applications for this technology were demonstrated by the use of a reduced graphene oxide/titanium dioxide nanocomposite-modified glassy carbon electrode, which enhanced the electrochemical performance compared to a conventional glassy carbon electrode when interacting with mercury(II) ions in potassium chloride electrolyte.
  19. Fan SP, Jiang LQ, Chia CH, Fang Z, Zakaria S, Chee KL
    Bioresour Technol, 2014 Feb;153:69-78.
    PMID: 24342947 DOI: 10.1016/j.biortech.2013.11.055
    Recent years, great interest has been devoted to the conversion of biomass-derived carbohydrate into sugars, such as glucose, mannose and fructose. These are important versatile intermediate products that are easily processed into high value-added biofuels. In this work, microwave-assisted dilute sulfuric acid hydrolysis of deproteinated palm kernel cake (DPKC) was systematically studied using Response Surface Methodology. The highest mannose yield (92.11%) was achieved at the optimized condition of 148°C, 0.75N H2SO4, 10min 31s and substrate to solvent (SS) ratio (w/v) of 1:49.69. Besides that, total fermentable sugars yield (77.11%), was obtained at 170°C, 0.181N H2SO4, 6min 6s and SS ratio (w/v) of 1:40. Ridge analysis was employed to further verify the optimum conditions. Thus, this work provides fundamental data of the practical use of DPKC as low cost, high yield and environmental-friendly material for the production of mannose and other sugars.
  20. Gan S, Zakaria S, Chia CH, Chen RS, Ellis AV, Kaco H
    PLoS One, 2017;12(3):e0173743.
    PMID: 28296977 DOI: 10.1371/journal.pone.0173743
    Here, a stable derivative of cellulose, called cellulose carbamate (CC), was produced from Kenaf (Hibiscus cannabinus) core pulp (KCP) and urea with the aid of a hydrothermal method. Further investigation was carried out for the amount of nitrogen yielded in CC as different urea concentrations were applied to react with cellulose. The effect of nitrogen concentration of CC on its solubility in a urea-alkaline system was also studied. Regenerated cellulose products (hydrogels and aerogels) were fabricated through the rapid dissolution of CC in a urea-alkaline system. The morphology of the regenerated cellulose products was viewed under Field emission scanning electron microscope (FESEM). The transformation of allomorphs in regenerated cellulose products was examined by X-ray diffraction (XRD). The transparency of regenerated cellulose products was determined by Ultraviolet-visible (UV-Vis) spectrophotometer. The degree of swelling (DS) of regenerated cellulose products was also evaluated. This investigation provides a simple and efficient procedure of CC determination which is useful in producing regenerated CC products.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links