A selective reproducible high-performance liquid chromatographic assay for the simultaneous quantitative determination of the antimalarial compound artemether (ARM), dihydroartemisinin (DQHS) and artemisinin (QHS), as internal standard, is described. After extraction from plasma, ARM and DQHS were analysed using a Lichrocart/Lichrosphere 100 CN stainless-steel column and a mobile phase of acetonitrile-0.05 M acetic acid (15:85, v/v) adjusted to pH 5.0, and electrochemical detection in the reductive mode. The mean recovery of ARM and DQHS over a concentration range of 30-120 ng/ml was 81.6% and 93.4%, respectively. The within-day coefficients of variation were 0.89-7.01% for ARM and 3.45-8.11% for DQHS. The day-to-day coefficients of variation were 2.06-8.43% and 3.22-6.33%, respectively. The minimum detectable concentration for ARM and DQHS in plasma was 2.5 and 1.25 ng/ml for both compounds. The method was found to be suitable for use in clinical pharmacological studies.
Spinocerebellar ataxias (SCA) are highly heterogenous group of neurodegenerative diseases causing progressive cerebellar dysfunction. We report the first description of relative frequencies of the common SCA mutations and of phenotypic characteristics of SCA3 patients among Malaysians. Pooled data from adult Malaysian patients who had undergone genetic testing for SCA 1,2,3,6 and 7 at UKM Medical Centre and Institute for Medical Research from 2017 to 2020 were analysed. Fifteen patients with SCA 3 had detailed clinical phenotype evaluation using Inventory for Non -Ataxia Signs (INAS) and Ataxia Severity evaluation using the Scale for Assessment and Rating of Ataxia (SARA). Out of 152 adults patients who were tested for common SCA mutations, 64(42.1%) patients were tested positive for either SCA 1,2,3,6 or 7. Of the 64 positive cases, 44 (68.9%) patients were diagnosed with SCA 3 followed by SCA 2 in 13(20.3%) patients and SCA 1 in 5 (7.8%) patients. Our findings suggest that Malay race had the highest frequency of SCA (n = 34, 50%), followed by the Chinese (n = 16, 23.5%) and approximately 60 (93.8%) SCA patients had first degree family history. In conclusion, SCA 3 is the commonest SCA in Malaysia, followed by SCA 2 and SCA 1. It is important to develop a proper registry of SCA patients to further understand the true prevalence and local impact of the disease in Malaysia.
Diabetes mellitus, a metabolic disorder of glucose metabolism, is mainly associated with insulin resistance to the body cells, or impaired production of insulin by the pancreatic β-cells. Insulin is mainly required to regulate glucose metabolism in type 1 diabetes mellitus patients; however, many patients with type 2 diabetes mellitus also require insulin, especially when their condition cannot be controlled solely by oral hypoglycemic agents. Hence, major research is ongoing attempting to improve the delivery of insulin in order to make it more convenient to patients who experience side effects from the conventional treatment procedure or non-adherence to insulin regimen due to multiple comorbid conditions. Conventionally, insulin is administered via subcutaneous route which is also one of the sole reasons of patient's non-compliance due to the invasiveness of this method. Several attempts have been done to improve patient compliance, reduce side effects, improve delivery adherence, and to enhance the pharmaceutical performance of the insulin therapy. Despite facing substantial challenges in developing efficient delivery systems for insulin, vast research studies have been carried out for the development of smart delivery systems to deliver insulin via ocular, buccal, pulmonary, oral, transdermal, as well as rectal routes. Therefore, the present review was aimed to overview the challenges encountered with the current insulin delivery systems and to summarize recent advancements in technology of various novel insulin delivery systems being discovered and introduced in the current market.
Mutations in KCNJ5, ATP1A1, ATP2B3, CACNA1D, and CTNNB1 are thought to cause the excessive autonomous aldosterone secretion of aldosterone-producing adenomas (APAs). The histopathology of KCNJ5 mutant APAs, the most common and largest, has been thoroughly investigated and shown to have a zona fasciculata-like composition. This study aims to characterize the histopathologic spectrum of the other genotypes and document the proliferation rate of the different sized APAs. Adrenals from 39 primary aldosteronism patients were immunohistochemically stained for CYP11B2 to confirm diagnosis of an APA. Twenty-eight adenomas had sufficient material for further analysis and were target sequenced at hot spots in the 5 causal genes. Ten adenomas had a KCNJ5 mutation (35.7%), 7 adenomas had an ATP1A1 mutation (25%), and 4 adenomas had a CACNA1D mutation (14.3%). One novel mutation in exon 28 of CACNA1D (V1153G) was identified. The mutation caused a hyperpolarizing shift of the voltage-dependent activation and inactivation and slowed the channel's inactivation kinetics. Immunohistochemical stainings of CYP17A1 as a zona fasciculata cell marker and Ki67 as a proliferation marker were used. KCNJ5 mutant adenomas showed a strong expression of CYP17A1, whereas ATP1A1/CACNA1D mutant adenomas had a predominantly negative expression (P value =1.20×10-4). ATP1A1/CACNA1D mutant adenomas had twice the nuclei with intense staining of Ki67 than KCNJ5 mutant adenomas (0.7% [0.5%-1.9%] versus 0.4% [0.3%-0.7%]; P value =0.04). Further, 3 adenomas with either an ATP1A1 mutation or a CACNA1D mutation had >30% nuclei with moderate Ki67 staining. In summary, similar to KCNJ5 mutant APAs, ATP1A1 and CACNA1D mutant adenomas have a seemingly specific histopathologic phenotype.