Displaying publications 1 - 20 of 39 in total

Abstract:
Sort:
  1. Zuharah WF, Fadzly N, Yusof NA, Dieng H
    J Insect Sci, 2015;15.
    PMID: 26386041 DOI: 10.1093/jisesa/iev115
    Viable biocontrol agents for mosquito control are quite rare, therefore improving the efficacy of existing biological agents is an important study. We need to have a better understanding of the predation-risk behavioral responses toward prey. This research examined prey choices by Toxorhynchites splendens by monitoring the behavioral responses of Aedes aegypti, Aedes albopictus, and Anopheles sinensis larvae when exposed to the predator. The results show that Tx. splendens prefers to consume Ae. aegypti larvae. The larvae exhibited different behavioral responses when Tx. splendens was present which suggest vulnerability in the presence of predators. "Thrashing" and "browsing" activities were greater in Ae. aegypti larvae. Such active and risky movements could cause vulnerability for the Ae. aegypti larvae due to increasing of water disturbance. In contrast, Ae. albopictus and An. sinensis larvae exhibited passive, low-risk behaviors, spending most of the time on the "wall" position near the edges of the container. We postulated that Ae. aegypti has less ability to perceive cues from predation and could not successfully alter its behavior to reduce risk of predation risk compared with Ae. albopictus and An. sinensis. Our results suggest that Tx. splendens is a suitable biocontrol agent in controlling dengue hemorrhagic vector, Ae. aegypti.
  2. Zuharah WF, Fadzly N, Ali Y, Zakaria R, Juperi S, Asyraf M, et al.
    Trop Biomed, 2014 Jun;31(2):297-304.
    PMID: 25134898 MyJurnal
    Vector-borne diseases are still rife because of the re-emergence of diseases transmitted by mosquitoes. The objective of this paper is to evaluate the larvicidal efficacy of crude leaf extract of Mangifera indica, Gluta renghas, and Melanochyla fasciculiflora against vector of dengue hemorrhagic fever, Aedes aegypti. These plant species are endemic species and widely distributed in Malaysian forests. Leaves of Ma. indica, G. renghas and M. fascculiflora were collected from Teluk Bahang National Park, Penang Malaysia. Fractions of leaves were segregated, air-dried, powdered and extracted using Soxhlet with methanol. The solvent was removed by using rotary evaporator to obtain the crude extract. Using WHO standard larval bioassay test method, third instar larvae of Aedes aegypti were exposed to concentration ranging from 200- 4500 ppm of methanol extract for all plant species. Larval mortality was observed after 24 hours exposure. The highest susceptibility and toxicity was recorded by Mangifera indica with the lowest concentration at 800 ppm followed by M. fasciculiflora and G. renghas. This indicates that crude plant extract is very effective in killing Ae. aegypti mosquitoes. This finding may lead to new low cost alternative, environmentally friendly method for mosquito control programs. To our knowledge, this is the first report on larvicidal bioefficacy from endemic Malaysian plants.
  3. Zuharah WF, Ahbirami R, Dieng H, Thiagaletchumi M, Fadzly N
    PMID: 27253746 DOI: 10.1590/S1678-9946201658044
    Plant derived insecticides have considerable potential for mosquito control because these products are safer than conventional insecticides. This study aimed to investigate sublethal activities of Ipomoea carica or railway creeper crude acethonilic extract against life history trait of dengue vectors, Aedes albopictus and Aedes aegypti. The late third instar larvae of Ae. albopictus and Ae. aegypti were exposed to a sublethal dose at LC50 and larvae that survived were further cultured. Overall, Ipomea cairica crude extracts affected the whole life history of both Aedes species. The study demonstrated significantly lower egg production (fecundity) and eggs hatchability (fertility) in Ae. albopictus. The sublethal dose of crude extracts reduced significantly the width of larval head capsule and the wing length of both sexes in both Aedes species. The significance of sublethal effects of I. cairica against Aedes mosquitoes was an additional hallmark to demonstrate further activity of this plant despite its direct toxicity to the larvae. The reduced reproductive capacity as well as morphological and physiological anomalies are some of the effects that make I. cairica a potential candidate to be used as a new plant-based insecticide to control dengue vectors.
  4. Thiagaletchumi M, Zuharah WF, Ahbi Rami R, Fadzly N, Dieng H, Ahmad AH, et al.
    Trop Biomed, 2014 Sep;31(3):466-76.
    PMID: 25382473 MyJurnal
    Specification on residual action of a possible alternative insecticide derived from plant materials is important to determine minimum interval time between applications and the environmental persistence of the biopesticides. The objective of this study is to evaluate crude acethonilic extract of Ipomoea cairica leaves for its residual and persistence effects against Culex quinquefasciatus larvae. Wild strain of Cx. quinquefasciatus larvae were used for the purpose of the study. Two test designs, replenishment of water and without replenishment of water were carried out. For the first design, a total of 10 ml of test solution containing Ip. cairica extracts was replenished daily and replaced with 10 ml of distilled water. For the second design, treatment water was maintained at 1500 ml and only evaporated water was refilled. Larval mortality was recorded at 24 hours post-treatment after each introduction period and trials were terminated when mortality rate falls below 50%. Adult emergences from survived larvae were observed and number of survivals was recorded. For the non-replenishment design, mortality rate significantly reduced to below 50% after 28 days, meanwhile for replenishment of water declined significantly after 21 days (P < 0.05). There was no adult emergence observed up to seven days for non-replenishment and first two days for replenishment of water design. The short period of residual effectiveness of crude acethonilic extract of Ip. cairica leaves with high percentage of larval mortality on the first few days, endorses fewer concerns of having excess residues in the environment which may carry the risk of insecticide resistance and environmental pollution.
  5. Suwanprinya L, Morales NP, Sanvarinda P, Dieng H, Okabayashi T, Morales Vargas RE
    Jpn J Infect Dis, 2017 07 24;70(4):383-387.
    PMID: 28003593 DOI: 10.7883/yoken.JJID.2016.236
    Encephalitis has been described worldwide as a severe complication in patients infected by dengue virus. Reactive oxygen species (ROS) production is a key mechanism involved in the neuronal damage caused by viral encephalitis. In the present study, the capability of dengue virus serotypes 2 (DENV2) and DENV4 to induce ROS production was investigated in a rat microglial cell line, HAPI cells. The cells were infected with DENV2 and DENV4 at a multiplicity of infection of 0.1 for a 2-h adsorption period. Japanese encephalitis virus (JEV) was used as the reference. DENV2- and DENV4-induced microglial activation and significantly increased ROS production corresponded to decreased cell viability. The activity of DENV4 was significantly higher than the activities of DENV2 and JEV at 48 and 72 h post infection. DENV4 partly induced ROS production via an iron-induced Fenton reaction, as demonstrated by the treatment with an iron chelator, deferiprone. Despite the induction of increased inducible nitric oxide synthase expression and nitric oxide (NO) production by JEV, DENV2, and DENV4 did not induce NO production, suggesting the activation of different pathways in response to infections by different viruses. In conclusion, DENV2 and DENV4 have the capability to induce ROS production and activate microglia, which have been reported as the key components of neuronal damage.
  6. Satho T, Dieng H, Ahmad MH, Ellias SB, Hassan AA, Abang F, et al.
    Parasit Vectors, 2015 May 14;8:272.
    PMID: 25966847 DOI: 10.1186/s13071-015-0874-6
    BACKGROUND: Dengue is a prevalent arboviral disease and the development of insecticide resistance among its vectors impedes endeavors to control it. Coffee is drunk by millions of people daily worldwide, which is associated with the discarding of large amounts of waste. Coffee and its waste contain large amounts of chemicals many of which are highly toxic and none of which have a history of resistance in mosquitoes. Once in solution, coffee is brownish in colour, resembling leaf infusion, which is highly attractive to gravid mosquitoes. To anticipate the environmental issues related to the increasing popularity of coffee as a drink, and also to combat insecticide resistance, we explored the deterrence potentials of coffee leachates against the ovipositing and embryonic stages of the dengue vector, Aedes albopictus.

    METHODS: In a series of choice, no-choice, and embryo toxicity bioassays, we examined changes in the ovipositional behaviours and larval eclosion of Ae. albopictus in response to coffee extracts at different concentrations.

    RESULTS: Oviposition responses were extremely low when ovicups holding highly concentrated extract (HCE) of coffee were the only oviposition sites. Gravid females retained increased numbers of mature eggs until 5 days post-blood feeding. When provided an opportunity to oviposit in cups containing coffee extracts and with water, egg deposition occurred at lower rates in those containing coffee, and HCE cups were far less attractive to females than those containing water only. Females that successfully developed in a coffee environment preferentially oviposited in such cups when in competition with preferred oviposition sites (water cups), but this trait did not continue into the fourth generation. Larval eclosion occurred at lower rates among eggs that matured in a coffee environment, especially among those that were maintained on HCE-moistened substrates.

    CONCLUSIONS: The observations of the present study indicate a pronounced vulnerability of Ae. albopictus to the presence of coffee in its habitats during the early phases of its life cycle. The observations that coffee repels gravid females and inhibits larval eclosion provide novel possibilities in the search for novel oviposition deterrents and anti-larval eclosion agents against dengue vectors.

  7. Saifur RG, Dieng H, Hassan AA, Satho T, Miake F, Boots M, et al.
    J Am Mosq Control Assoc, 2010 Dec;26(4):373-80.
    PMID: 21290932
    Moisture plays a major role in the dynamics of mosquito populations, especially those breeding in container habitats. Despite this importance, the role of moisture conditions as they affect oviposition and egg development in Aedes vectors remains largely unexplored. We investigated the effect of exposing gravid female Aedes albopictus mosquitoes and their eggs to different moisture levels (MLs) for various periods on oviposition and hatching. Overall, high-moisture substrates (HMSs; 66% and 72%) provided better environments for egg laying. The timing of initial egg laying was far longer at the lowest substrate moisture level (LSML, 25% and 41.2%) than at HMSs. The numbers of eggs laid were much lower in the drier environments. At LSMLs, gravid females retained increasing numbers of mature eggs until death, and egg retention decreased gradually with increasing ML. The HMSs also provided better environments for larval eclosion. The numbers of eggs hatched were lower at the LSML than the HSML environment. No egg hatching occurred after 1 h exposure to moisture. However, egg hatching occurred by installment, with spontaneous hatching (SH) increasing gradually with increasing ML. High-moisture conditions combined with long exposure (30 h and 48 h) favored SH. These results suggest that Ae. albopictus females can respond to better moisture conditions for increased success of embryonation and larval eclosion. This information may be useful in the colonization of floodwater Aedes species.
  8. Saifur RG, Hassan AA, Dieng H, Salmah MR, Saad AR, Satho T
    J Am Mosq Control Assoc, 2013 Mar;29(1):33-43.
    PMID: 23687853
    We studied the diversity of Aedes breeding sites in various urban, suburban, and rural areas over time between February 2009 and February 2010 in the dengue endemic areas of Penang Island, Malaysia. We categorized the breeding sites and efficiency, and identified the key breeding containers. Among the 3 areas, the rural areas produced the highest container index (55), followed by suburban (42) and urban (32) areas. The numbers of key premises and containers were significantly higher (P < 0.000) in rural areas. The class 1 containers were identified as the key containers with higher productivity and efficiency, although class 2 and class 4 are the highest in numbers. Aedes aegypti immatures were found mostly in drums, water reservoirs, and polyethylene sheets, while mixed breeding was more common in buckets and empty paint cans in urban and suburban areas. Aedes albopictus was found mainly in miscellaneous containers such as drums, empty paint cans, and covers in all areas. The main potential containers indoors were drums, water reservoirs, and empty paint cans, and containers outdoors included empty paint cans, drums, and polyethylene sheets.
  9. Saifur RG, Hassan AA, Dieng H, Ahmad H, Salmah MR, Satho T, et al.
    J Am Mosq Control Assoc, 2012 Jun;28(2):84-92.
    PMID: 22894118
    It is important to obtain frequent measurements of the abundance, distribution, and seasonality of mosquito vectors to determine the risk of disease transmission. The number of cases of dengue infection has increased in recent years on Penang Island, Malaysia, with recurring epidemics. However, ongoing control attempts are being critically hampered by the lack of up-to-date information regarding the vectors. To overcome this problem, we examined the current situation and distribution of dengue vectors on the island. Residences throughout the urban, suburban, and rural areas were inspected through wet and dry seasons between February 2009 and February 2010. Two vectors were encountered in the survey, with Aedes aegypti present in especially high numbers mostly in urban areas. Similar observations were noted for Ae. albopictus in rural areas. The former species was more abundant in outdoor containers, while the latter showed almost equivalent abundance both outdoors and indoors. The dengue virus was active in both urban and rural areas, and the number of cases of infection was higher in areas where Ae. aegypti was predominant. The abundance of immature Ae. albopictus was positively correlated with rainfall (r2 = 0.461; P < 0.05), but this was not the case for Ae. aegypti. For both species, the size of immature populations tended to increase with increasing intensity of rain, but heavy rains resulted in population loss. In addition to updating data regarding the larval habitats and locations (outdoors and indoors), this study highlighted the importance of spatial vector control stratification, which has the potential to reduce costs in control programs.
  10. Saifur RG, Dieng H, Hassan AA, Salmah MR, Satho T, Miake F, et al.
    PLoS One, 2012;7(2):e30919.
    PMID: 22363516 DOI: 10.1371/journal.pone.0030919
    BACKGROUND: The domestic dengue vector Aedes aegypti mosquitoes breed in indoor containers. However, in northern peninsular Malaysia, they show equal preference for breeding in both indoor and outdoor habitats. To evaluate the epidemiological implications of this peridomestic adaptation, we examined whether Ae. aegypti exhibits decreased survival, gonotrophic activity, and fecundity due to lack of host availability and the changing breeding behavior.

    METHODOLOGY/PRINCIPAL FINDINGS: This yearlong field surveillance identified Ae. aegypti breeding in outdoor containers on an enormous scale. Through a sequence of experiments incorporating outdoors and indoors adapting as well as adapted populations, we observed that indoors provided better environment for the survival of Ae. aegypti and the observed death patterns could be explained on the basis of a difference in body size. The duration of gonotrophic period was much shorter in large-bodied females. Fecundity tended to be greater in indoor acclimated females. We also found increased tendency to multiple feeding in outdoors adapted females, which were smaller in size compared to their outdoors breeding counterparts.

    CONCLUSION/SIGNIFICANCE: The data presented here suggest that acclimatization of Ae. aegypti to the outdoor environment may not decrease its lifespan or gonotrophic activity but rather increase breeding opportunities (increased number of discarded containers outdoors), the rate of larval development, but small body sizes at emergence. Size is likely to be correlated with disease transmission. In general, small size in Aedes females will favor increased blood-feeding frequency resulting in higher population sizes and disease occurrence.

  11. Muhammad NAF, Kassim NFA, Ab Majid AH, Wajidi MFF, Jamsari AFJ, Dieng H, et al.
    Trop Biomed, 2018 Dec 01;35(4):1049-1063.
    PMID: 33601852
    The medically important mosquito, Aedes albopictus is native to Asia and has become a major health concern in most Asian countries including Malaysia. Being recognized as a dengue vector, a clearer understanding of how mosquito populations are geographically connected, may therefore represent a profound yet significant understanding of control strategies. There are no documented reports on the genetic structure of Ae. albopictus populations from different developed settlements inferred from microsatellite DNA markers in Malaysia, particularly in Penang Island (Northern Peninsular Malaysia). Here, we assessed the molecular population genetics of Ae. albopictus in terms of their allelic variation, genetic diversity and population structure. A total of 42 mosquitoes were sampled from Jelutong, Batu Maung and Balik Pulau which represented urban, suburban and rural areas in Penang Island respectively and analysed for polymorphism at six microsatellite loci. All of the microsatellite markers were successfully amplified and were polymorphic, showing low genetic structure among geographic populations (FST= 0.0362). It is supported with admixture individuals observed in STRUCTURE and FCA and this suggests that high gene flow has been experienced between populations. These findings implicate passive dispersal through human-aided transportation; as a factor shaping the genetic structure of Ae. albopictus populations in Penang Island.
  12. Muhammad NAF, Abu Kassim NF, Ab Majid AH, Abd Rahman A, Dieng H, Avicor SW
    PLoS One, 2020;15(11):e0241688.
    PMID: 33175896 DOI: 10.1371/journal.pone.0241688
    Urbanization could potentially modify Aedes albopictus' ecology by changing the dynamics of the species, and affecting their breeding sites due to environmental changes, and thus contribute to dengue outbreaks. Thus, this study was conducted to evaluate the biting rhythm, fecundity and longevity of adult female Ae. albopictus in relation to urbanization strata; urban, suburban and rural areas in Penang Island, Malaysia. The experiments were done in comparison to a laboratory strain. Twenty-four hours biting activity of all the mosquito strains showed a clear bimodal biting activity, with morning and evening twilight peaks. The interaction effect between biting time and mosquito strains was not significant. Meanwhile, differences in fecundity among mosquito strains were statistically significant (F(3,442) = 10.559, P < 0.05) with urban areas having higher mean number of eggs (mean = 107.69, standard error = 3.98) than suburban (mean = 94.48, standard error = 5.18), and rural areas (mean = 72.52, standard error = 3.87). Longevity of adult females were significantly higher (F(3,441) = 31.259, P < 0.05) for mosquito strains from urban areas compared to the other strains. These findings would provide crucial information for the planning of control programs in Malaysia, particularly Penang.
  13. Marcela P, Hassan AA, Hamdan A, Dieng H, Kumara TK
    J Am Mosq Control Assoc, 2015 Dec;31(4):313-20.
    PMID: 26675452 DOI: 10.2987/moco-31-04-313-320.1
    Mating behavior between Aedes aegypti and Ae. albopictus, established colony strains were examined under laboratory conditions (30-cm(3) screened cages) for 5 consecutive days. The effect of selected male densities (30, 20, 10) and female density (20) on the number of swarming, mating pairs, eggs produced, and inseminated females were evaluated. Male densities significantly increased swarming behavior, mating pairs, and egg production of heterospecific females, but female insemination was reduced. Aedes aegypti males mate more readily with heterospecific females than do Ae. albopictus males. The current study suggests that Ae. aegypti males were not species-specific in mating, and if released into the field as practiced in genetically modified mosquito techniques, they may mate with both Ae. aegypti and Ae. albopictus females, hence reducing populations of both species by producing infertile eggs.
  14. Kermani N, Abu-Hassan ZA, Dieng H, Ismail NF, Attia M, Abd Ghani I
    PLoS One, 2013;8(5):e62884.
    PMID: 23675435 DOI: 10.1371/journal.pone.0062884
    Biological control using pathogenic microsporidia could be an alternative to chemical control of the diamondback moth (DBM) Plutella xylostella (Lepidoptera: Plutellidae). The microsporidium Nosema bombycis (NB) is one of the numerous pathogens that can be used in the Integrated Pest Management (IPM) of DBM. However, its pathogenicity or effectiveness can be influenced by various factors, particularly temperature. This study was therefore conducted to investigate the effect of temperature on NB infection of DBM larvae. Second-instar larvae at different doses (spore concentration: 0, 1×10²,1×10³,1×10⁴, and 1×10⁵) at 15°, 20°, 25°, 30° and 35°C and a relative humidity(RH) of 65% and light dark cycle (L:D) of 12∶12. Larval mortality was recorded at 24 h intervals until the larvae had either died or pupated. The results showed that the spore concentration had a significant negative effect on larval survival at all temperatures, although this effect was more pronounced (92%) at 35°C compared with that at 20 and 30°C (≃50%) and 25°C (26%). Histological observations showed that Nosema preferentially infected the adipose tissue and epithelial cells of the midgut, resulting in marked vacuolization of the cytoplasm. These findings suggest that Nosema damaged the midgut epithelial cells. Our results suggest that Nosema had a direct adverse effect on DBM, and could be utilized as an important biopesticide alternative to chemical insecticides in IPM.
  15. Ghani IA, Dieng H, Abu Hassan ZA, Ramli N, Kermani N, Satho T, et al.
    PLoS One, 2013;8(12):e81642.
    PMID: 24349104 DOI: 10.1371/journal.pone.0081642
    Due to problems with chemical control, there is increasing interest in the use of microsporidia for control of lepidopteran pests. However, there have been few studies to evaluate the susceptibility of exotic species to microsporidia from indigenous Lepidoptera.
  16. Dieng H, Hassan RB, Hassan AA, Ghani IA, Abang FB, Satho T, et al.
    Acta Trop, 2015 May;145:68-78.
    PMID: 25617636 DOI: 10.1016/j.actatropica.2015.01.004
    Even with continuous vector control, dengue is still a growing threat to public health in Southeast Asia. Main causes comprise difficulties in identifying productive breeding sites and inappropriate targeted chemical interventions. In this region, rural families keep live birds in backyards and dengue mosquitoes have been reported in containers in the cages. To focus on this particular breeding site, we examined the capacity of bird fecal matter (BFM) from the spotted dove, to support Aedes albopictus larval growth. The impact of BFM larval uptake on some adult fitness traits influencing vectorial capacity was also investigated. In serial bioassays involving a high and low larval density (HD and LD), BFM and larval standard food (LSF) affected differently larval development. At HD, development was longer in the BFM environment. There were no appreciable mortality differences between the two treatments, which resulted in similar pupation and adult emergence successes. BFM treatment produced a better gender balance. There were comparable levels of blood uptake and egg production in BFM and LSF females at LD; that was not the case for the HD one, which resulted in bigger adults. BFM and LSF females displayed equivalent lifespans; in males, this parameter was shorter in those derived from the BFM/LD treatment. Taken together these results suggest that bird defecations successfully support the development of Ae. albopictus. Due to their cryptic aspects, containers used to supply water to encaged birds may not have been targeted by chemical interventions.
  17. Dieng H, Rajasaygar S, Ahmad AH, Rawi CS, Ahmad H, Satho T, et al.
    Acta Trop, 2014 Feb;130:123-30.
    PMID: 24239749 DOI: 10.1016/j.actatropica.2013.11.001
    Despite major insecticide-based vector control programs, dengue continues to be a major threat to public health in urban areas. The reasons for this failure include the emergence of insecticide resistance and the narrowing of the spectrum of efficient products. Cigarette butts (CBs), the most commonly discarded piece of waste, also represent a major health hazard to human and animal life. CBs are impregnated with thousands of chemical compounds, many of which are highly toxic and none of which has history of resistance in mosquitoes. This study was performed to examine whether exposure to CB alters various biological parameters of parents and their progeny. We examined whether the mosquito changes its ovipositional behaviors, egg hatching, reproductive capacity, longevity and fecundity in response to CB exposure at three different concentrations. Females tended to prefer microcosms containing CBs for egg deposition than those with water only. There were equivalent rates of eclosion success among larvae from eggs that matured in CB and water environments. We also observed decreased life span among adults that survived CB exposure. Extracts of CB waste have detrimental effects on the fecundity and longevity of its offspring, while being attractive to its gravid females. These results altogether indicate that CB waste indirectly affect key adult life traits of Aedes aegypti and could conceivably be developed as a novel dengue vector control strategy, referring to previously documented direct toxicity on the larval stage. But this will require further research on CB waste effects on non-target organisms including humans.
  18. Dieng H, Rajasaygar S, Ahmad AH, Ahmad H, Rawi CS, Zuharah WF, et al.
    Acta Trop, 2013 Dec;128(3):584-90.
    PMID: 23999373 DOI: 10.1016/j.actatropica.2013.08.013
    Annually, 4.5 trillion cigarette butts (CBs) are flicked into our environment. Evidence exists that CB waste is deadly to aquatic life, but their lethality to the aquatic life of the main dengue vector is unknown. CBs are full of toxicants that occur naturally, during planting and manufacturing, which may act as larvicidal agents. We assessed Aedes aegypti vulnerability to Marlboro butts during its development. Overall, CBs showed insecticidal activities against larvae. At early phases of development, mortality rates were much higher in two CBs solution (2CBSol) and 3CBSol microcosms (MICRs). Larval survival gradually decreased with development in 1CBSol-MICRs. However, in great presence of CBs, mortality was high even for the late developmental stages. These results suggest that A. aegypti larvae are vulnerable to CB presence in their habitats, but this effect was seen most during the early developmental phases and in the presence of increased amounts of cigarette remnants. CB filters are being used as raw material in many sectors, i.e., brick, art, fashion, plastic industries, as a practical solution to the pollution problem, the observed butt waste toxicity to mosquito larvae open new avenues for the identification of novel insecticide products.
  19. Dieng H, Saifur RG, Ahmad AH, Salmah MR, Aziz AT, Satho T, et al.
    Asian Pac J Trop Biomed, 2012 Mar;2(3):228-32.
    PMID: 23569903 DOI: 10.1016/S2221-1691(12)60047-1
    To identify the unusual breeding sites of two dengue vectors, i.e. Aedes albopictus (Ae. albopictus) and Aedes aegypti (Ae. aegypti).
  20. Dieng H, Saifur RG, Hassan AA, Salmah MR, Boots M, Satho T, et al.
    PLoS One, 2010;5(7):e11790.
    PMID: 20668543 DOI: 10.1371/journal.pone.0011790
    The mosquito Ae. albopictus is usually adapted to the peri-domestic environment and typically breeds outdoors. However, we observed its larvae in most containers within homes in northern peninsular Malaysia. To anticipate the epidemiological implications of this indoor-breeding, we assessed some fitness traits affecting vectorial capacity during colonization process. Specifically, we examined whether Ae. albopictus exhibits increased survival, gonotrophic activity and fecundity due to the potential increase in blood feeding opportunities.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links