Displaying all 5 publications

Abstract:
Sort:
  1. Mustafa IF, Hussein MZ, Idris AS, Hilmi NHZ, Fakurazi S
    Molecules, 2021 Sep 26;26(19).
    PMID: 34641379 DOI: 10.3390/molecules26195837
    Reports on fungicide-based agronanochemicals in combating disastrous basal stem rot disease in the oil palm industry are scant. Herein, we describe the potential of fungicide nanodelivery agents based on hexaconazole-micelle systems produced using three different surfactants; sodium dodecylbenze sulfonate (SDBS), sodium dodecyl sulfate (SDS) and Tween 80 (T80). The resulting nanodelivery systems were characterized and the results supported the encapsulation of the fungicide into the micelles of the surfactants. We have investigated in detail the size-dependent effects of the as-synthesized micelles towards the inhibition growth of Ganoderma Boninense fungi. All the nanodelivery systems indicate that their size decreased as the surfactant concentration was increased, and it directly affects the fungal inhibition. It was also found that Tween 80, a non-ionic surfactant gave the lowest effective concentration, the EC50 value of 2, on the pathogenic fungus Ganoderma boninense compared to the other anionic surfactants; SDBS and SDS. This study opens up a new generation of agronanofungicide of better efficacy for Ganoderma disease treatment.
  2. Mustafa IF, Hussein MZ, Saifullah B, Idris AS, Hilmi NHZ, Fakurazi S
    J Agric Food Chem, 2018 Jan 31;66(4):806-813.
    PMID: 29281878 DOI: 10.1021/acs.jafc.7b04222
    A fungicide, hexaconazole was successfully intercalated into the intergalleries of zinc/aluminum-layered double hydroxide (ZALDH) using the ion-exchange method. Due to the intercalation of hexaconazole, the basal spacing of the ZALDH was increased from 8.7 Å in ZALDH to 29.4 Å in hexaconazole-intercalated ZALDH (HZALDH). The intercalation of hexaconazole into the interlayer of the nanocomposite was confirmed using the Fourier-transform infrared (FTIR) study. This supramolecular chemistry intercalation process enhanced the thermal stability of the hexaconazole moiety. The fungicide loading was estimated to be 51.8%. The nanodelivery system also shows better inhibition toward the Ganoderma boninense growth than the counterpart, free hexaconazole. The results from this work have a great potential to be further explored for combating basal stem rot (BSR) disease in oil palm plantation.
  3. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Maznah Z, Idris AS, et al.
    Sci Rep, 2020 12 18;10(1):22323.
    PMID: 33339951 DOI: 10.1038/s41598-020-79335-6
    The nanoformulations of pesticides have shown great interest from many parties due to their slow release capability and site-specific delivery. Hence, in this work, a new nanoformulation of a fungicide, namely chitosan-hexaconazole nanoparticles with a mean diameter size of 18 nm was subjected to the residual analysis on oil palm tissue, leaf and palm oil (crude palm oil and crude palm kernel oil) using a quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with the gas chromatography-micro electron capture detector (GC-µECD). The chitosan-hexaconazole nanoparticles were applied using the trunk injection method at 4.5 g a.i./palm (standard single dose) and 9.0 g a.i./palm (double dose). The fungicide residue was analyzed at 0 (6 h after application), 1, 3, 7, 14, 30, 60, 90, and 120 days after treatment. The palm oil matrices; the crude palm oil (CPO) and crude palm kernel oil (CPKO) were found to be residue-free. However, it was observed that high accumulation of the fungicide in the stem tissue and leaf after the treatment using the chitosan-hexaconazole nanoparticles, which is good for better bioavailability for the treatment of the fungi, Ganoderma boninense. The dissipation kinetic at double dose treatment in the tissue and leaf was found to govern by the second-order kinetic with half-lives (t1/2) of 383 and 515 days, respectively.
  4. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Idris AS, Hilmi NHZ, et al.
    Int J Mol Sci, 2019 May 07;20(9).
    PMID: 31067720 DOI: 10.3390/ijms20092247
    The use of nanotechnology could play a significant role in the agriculture sector, especially in the preparation of new-generation agronanochemicals. Currently, the economically important plant of Malaysia, the oil palm, faces the threat of a devastating disease which is particularly caused by a pathogenic fungus, Ganoderma boninense. For the development of an effective antifungal agent, a series of chitosan nanoparticles loaded with a fumigant, dazomet, were prepared using various concentrations of sodium tripolyphosphate (TPP)-2.5, 5, 10, and 20 mg/mL, abbreviated as CDEN2.5, CDEN5, CDEN10, and CDEN20, respectively. The effect of TPP as a crosslinking agent on the resulting particle size of the synthesized nanoparticles was investigated using a particle size analyzer and high-resolution transmission electron microscopy (HRTEM). Both methods confirmed that increasing the TPP concentration resulted in smaller particles. In addition, in vitro fumigant release at pH 5.5 showed that the release of the fumigant from the nanoparticles was of a sustained manner, with a prolonged release time up to 24 h. Furthermore, the relationship between the chitosan-dazomet nanoparticles and the in vitro antifungal activity against G. boninense was also explored, where the nanoparticles of the smallest size, CDEN20, gave the highest antifungal efficacy with the lowest half maximum effective concentration (EC50) value of 13.7 ± 1.76 ppb. This indicates that the smaller-sized agronanoparticles were more effective as an antifungal agent. The size can be altered, which plays a crucial role in combatting the Ganoderma disease. The agronanoparticles have controlled release properties and high antifungal efficacy on G. boninense, thus making them a promising candidate to be applied in the field for Ganoderma treatment.
  5. Maluin FN, Hussein MZ, Yusof NA, Fakurazi S, Idris AS, Hilmi NHZ, et al.
    PLoS One, 2020;15(4):e0231315.
    PMID: 32315346 DOI: 10.1371/journal.pone.0231315
    Although fungicides could be the best solution in combating fungal infections in crops, however, the phytotoxic level of fungicides to the crops should be tested first to ensure that it is safe for the crops. Moreover, nanocarrier systems of fungicides could play a significant role in the advancement of crop protection. For this reason, chitosan was chosen in the present study as a nanocarrier for fungicides of hexaconazole and/or dazomet in the development of a new generation of agronanofungicides with a high antifungal potent agent and no phytotoxic effect. Hence, the encapsulation of fungicides into the non-toxic biopolymer, chitosan was aims to reduce the phytotoxic level of fungicides. In the present study, the in vivo phytotoxicity of chitosan-fungicides nanoparticles on the physiological and vegetative growth of oil palm seedlings was evaluated in comparison to its pure fungicides as well as the conventional fungicides. The results revealed the formation of chitosan-fungicides nanoparticles could reduce the phytotoxic effect on oil palm seedlings compared to their counterparts, pure fungicides. The chitosan-fungicides nanoparticles were seen to greatly reduce the phytotoxic effect compared to the conventional fungicides with the same active ingredient.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links