OBJECTIVES: To assess the effectiveness and safety of various interventions for the treatment of oro-antral communications and fistulae due to dental procedures.
SEARCH METHODS: We searched the Cochrane Oral Health Group's Trials Register (whole database, to 3 July 2015), the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, 2015, Issue 6), MEDLINE via OVID (1946 to 3 July 2015), EMBASE via OVID (1980 to 3 July 2015), US National Institutes of Health Trials Registry (http://clinicaltrials.gov) (whole database, to 3 July 2015) and the World Health Organization (WHO) International Clinical Trials Registry Platform (http://www.who.int/ictrp/en/) (whole database, to 3 July 2015). We also searched the reference lists of included and excluded trials for any randomised controlled trials (RCTs).
SELECTION CRITERIA: We included RCTs evaluating any intervention for treating oro-antral communications or oro-antral fistulae due to dental procedures. We excluded quasi-RCTs and cross-over trials. We excluded studies on participants who had oro-antral communications, fistulae or both related to Caldwell-Luc procedure or surgical excision of tumours.
DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials. Two review authors assessed trial risk of bias and extracted data independently. We estimated risk ratios (RR) for dichotomous data, with 95% confidence intervals (CI). We assessed the overall quality of the evidence using the GRADE approach.
MAIN RESULTS: We included only one study in this review, which compared two surgical interventions: pedicled buccal fat pad flap and buccal flap for the treatment of oro-antral communications. The study involved 20 participants. The risk of bias was unclear. The relevant outcome reported in this trial was successful (complete) closure of oro-antral communication.The quality of the evidence for the primary outcome was very low. The study did not find evidence of a difference between interventions for the successful (complete) closure of an oro-antral communication (RR 1.00, 95% Cl 0.83 to 1.20) one month after the surgery. All oro-antral communications in both groups were successfully closed so there were no adverse effects due to treatment failure.We did not find trials evaluating any other intervention for treating oro-antral communications or fistulae due to dental procedures.
AUTHORS' CONCLUSIONS: We found very low quality evidence from a single small study that compared pedicled buccal fat pad and buccal flap. The evidence was insufficient to judge whether there is a difference in the effectiveness of these interventions as all oro-antral communications in the study were successfully closed by one month after surgery. Large, well-conducted RCTs investigating different interventions for the treatment of oro-antral communications and fistulae caused by dental procedures are needed to inform clinical practice.
OBJECTIVES: To assess the effects of interventions for treating different types of post-extraction bleeding.
SEARCH METHODS: We searched the following electronic databases: The Cochrane Oral Health Group Trials Register (to 22 March 2016); The Cochrane Central Register of Controlled Trials (CENTRAL; The Cochrane Library 2016, Issue 2); MEDLINE via OVID (1946 to 22 March 2016); CINAHL via EBSCO (1937 to 22 March 2016). Due to the ongoing Cochrane project to search EMBASE and add retrieved clinical trials to CENTRAL, we searched only the last 11 months of EMBASE via OVID (1 May 2015 to 22 March 2016). We placed no further restrictions on the language or date of publication. We searched the US National Institutes of Health Trials Register (http://clinicaltrials.gov), and the WHO Clinical Trials Registry Platform for ongoing trials (http://apps.who.int/trialsearch/default.aspx). We also checked the reference lists of excluded trials.
SELECTION CRITERIA: We considered randomised controlled trials (RCTs) that evaluated any intervention for treating PEB, with male or female participants of any age, regardless of type of teeth (anterior or posterior, mandibular or maxillary). Trials could compare one type of intervention with another, with placebo, or with no treatment.
DATA COLLECTION AND ANALYSIS: Three pairs of review authors independently screened search records. We obtained full papers for potentially relevant trials. If data had been extracted, we would have followed the methods described in the Cochrane Handbook for Systematic Reviews of Interventions for the statistical analysis.
MAIN RESULTS: We did not find any randomised controlled trial suitable for inclusion in this review.
AUTHORS' CONCLUSIONS: We were unable to identify any reports of randomised controlled trials that evaluated the effects of different interventions for the treatment of post-extraction bleeding. In view of the lack of reliable evidence on this topic, clinicians must use their clinical experience to determine the most appropriate means of treating this condition, depending on patient-related factors. There is a need for well designed and appropriately conducted clinical trials on this topic, which conform to the CONSORT statement (www.consort-statement.org/).
OBJECTIVES: To assess the effectiveness and safety of various interventions for the treatment of oro-antral communications and fistulae due to dental procedures.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 23 May 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2018, Issue 4), MEDLINE Ovid (1946 to 23 May 2018), and Embase Ovid (1980 to 23 May 2018). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. We also searched the reference lists of included and excluded trials for any randomised controlled trials (RCTs).
SELECTION CRITERIA: We included RCTs evaluating any intervention for treating oro-antral communications or oro-antral fistulae due to dental procedures. We excluded quasi-RCTs and cross-over trials. We excluded studies on participants who had oro-antral communications, fistulae or both related to Caldwell-Luc procedure or surgical excision of tumours.
DATA COLLECTION AND ANALYSIS: Two review authors independently selected trials. Two review authors assessed trial risk of bias and extracted data independently. We estimated risk ratios (RR) for dichotomous data, with 95% confidence intervals (CI). We assessed the overall quality of the evidence using the GRADE approach.
MAIN RESULTS: We included only one study in this review, which compared two surgical interventions: pedicled buccal fat pad flap and buccal flap for the treatment of oro-antral communications. The study involved 20 participants. The risk of bias was unclear. The relevant outcome reported in this trial was successful (complete) closure of oro-antral communication.The quality of the evidence for the primary outcome was very low. The study did not find evidence of a difference between interventions for the successful (complete) closure of an oro-antral communication (RR 1.00, 95% Cl 0.83 to 1.20) one month after the surgery. All oro-antral communications in both groups were successfully closed so there were no adverse effects due to treatment failure.We did not find trials evaluating any other intervention for treating oro-antral communications or fistulae due to dental procedures.
AUTHORS' CONCLUSIONS: We found very low quality evidence from a single small study that compared pedicled buccal fat pad and buccal flap. The evidence was insufficient to judge whether there is a difference in the effectiveness of these interventions as all oro-antral communications in the study were successfully closed by one month after surgery. Large, well-conducted RCTs investigating different interventions for the treatment of oro-antral communications and fistulae caused by dental procedures are needed to inform clinical practice.
OBJECTIVES: To assess the effects of interventions for treating different types of post-extraction bleeding.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 24 January 2018), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2017, Issue 12), MEDLINE Ovid (1946 to 24 January 2018), Embase Ovid (1 May 2015 to 24 January 2018) and CINAHL EBSCO (1937 to 24 January 2018). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. We searched the reference lists of relevant systematic reviews.
SELECTION CRITERIA: We considered randomised controlled trials (RCTs) that evaluated any intervention for treating PEB, with male or female participants of any age, regardless of type of teeth (anterior or posterior, mandibular or maxillary). Trials could compare one type of intervention with another, with placebo, or with no treatment.
DATA COLLECTION AND ANALYSIS: Three pairs of review authors independently screened search records. We obtained full papers for potentially relevant trials. If data had been extracted, we would have followed the methods described in the Cochrane Handbook for Systematic Reviews of Interventions for the statistical analysis.
MAIN RESULTS: We did not find any randomised controlled trial suitable for inclusion in this review.
AUTHORS' CONCLUSIONS: We were unable to identify any reports of randomised controlled trials that evaluated the effects of different interventions for the treatment of post-extraction bleeding. In view of the lack of reliable evidence on this topic, clinicians must use their clinical experience to determine the most appropriate means of treating this condition, depending on patient-related factors. There is a need for well designed and appropriately conducted clinical trials on this topic, which conform to the CONSORT statement (www.consort-statement.org/).
METHODS: We adopted the Joanna Briggs Institute's scoping review protocol and followed the Cochrane Rapid Review method to accelerate the review process, using the Implementation and Operation of Mobile Health projects framework and The Extended Technology Acceptance Model of Mobile Telephony to categorise the results. We conducted the review in four stages: (1) establishing value, (2) identifying digital health policy, (3) searching for evidence of infrastructure, design, and end-user adoption, (4) local input to interpret relevance and adoption factors. We used open-source national/international statistics such as the World Health Organization, International Telecommunication Union, Groupe Speciale Mobile, and local news/articles/government statistics to scope the current status, and systematically searched five databases for locally relevant exemplars.
RESULTS: We found 118 studies (2015-2021) and 114 supplementary online news articles and national statistics. Digital health policy was available in all countries, but scarce skilled labour, lack of legislation/interoperability support, and interrupted electricity and internet services were limitations. Older patients, women and those living in rural areas were least likely to have access to ICT infrastructure. Renewable energy has potential in enabling digital health care. Low usage mobile data and voice service packages are relatively affordable options for mHealth in the five countries.
CONCLUSIONS: Effective implementation of digital health technologies requires a supportive policy, stable electricity infrastructures, affordable mobile internet service, and good understanding of the socio-economic context in order to tailor the intervention such that it functional, accessible, feasible, user-friendly and trusted by the target users. We suggest a checklist of contextual factors that developers of digital health initiatives in LMICs should consider at an early stage in the development process.