Displaying all 10 publications

Abstract:
Sort:
  1. Karim Z, Zulkifli NA, Sheikh Abdul Kadir SH, Abd Khalil K, Musa M
    Ann Oncol, 2018 Nov;29 Suppl 9:ix55.
    PMID: 32178067 DOI: 10.1093/annonc/mdy432.026
  2. Zulkifli S, Mohd Nor NS, Sheikh Abdul Kadir SH, Mohd Ranai N, Abdul Khalil K
    PLoS One, 2024;19(7):e0306741.
    PMID: 38980850 DOI: 10.1371/journal.pone.0306741
    There has been much evidence showing the repercussions of prenatal bisphenol A (BPA) exposure with a postnatal high fat-diet (HFD) on offspring's health. However, the information on how the interaction between these two variables affects the gut microbiome is rather limited. Hence, we investigated the impact of a postnatal trans fat diet (TFD) on the gut microbiome of offspring exposed to BPA during the prenatal period in an animal model. Pregnant rats were divided into 5 mg/kg/day BPA, vehicle Tween80 (P80) or control (CTL) drinking water until delivery (N = 6 per group). Then, weaned male pups were further subdivided into three normal diet (ND) groups (CTLND, P80ND, and BPAND) and three TFD groups (CTLTFD, P80TFD, and BPATFD) (n = 6 per group). 180-250 g of faecal samples were collected on days 50 and 100 to assess the composition of the offspring's intestinal flora using next-generation sequencing. The alpha diversity indices of TFD offspring with and without BPA were markedly lower than their ND counterparts (p<0.001-p<0.05). The beta diversity, hierarchical cluster and network analyses of the offspring's microbiome demonstrated that the microbiome species of the TFD group with and without BPA were distinctly different compared to the ND group. Consistently, TFD and ND offspring pairings exhibited a higher number of significantly different species (p<0.0001-p<0.05) compared to those exposed to prenatal BPA exposure and different life stages comparisons, as shown by the multivariate parametric analysis DESeq2. Predictive functional profiling of the offspring's intestinal flora demonstrated altered expressions of genes involved in metabolic pathways. In summary, the gut flora composition of the rat offspring may be influenced by postnatal diet instead of prenatal exposure to BPA. Our data indicate the possibility of perturbed metabolic functions and epigenetic modifications, in offspring that consumed TFD, which may theoretically lead to metabolic diseases in middle or late adulthood. Further investigation is necessary to fully understand these implications.
  3. Zahri KNM, Zulkharnain A, Gomez-Fuentes C, Sabri S, Abdul Khalil K, Convey P, et al.
    Life (Basel), 2021 May 20;11(5).
    PMID: 34065265 DOI: 10.3390/life11050456
    Hydrocarbons can cause pollution to Antarctic terrestrial and aquatic ecosystems, both through accidental release and the discharge of waste cooking oil in grey water. Such pollutants can persist for long periods in cold environments. The native microbial community may play a role in their biodegradation. In this study, using mixed native Antarctic bacterial communities, several environmental factors influencing biodegradation of waste canola oil (WCO) and pure canola oil (PCO) were optimised using established one-factor-at-a-time (OFAT) and response surface methodology (RSM) approaches. The factors include salinity, pH, type of nitrogen and concentration, temperature, yeast extract and initial substrate concentration in OFAT and only the significant factors proceeded for the statistical optimisation through RSM. High concentration of substrate targeted for degradation activity through RSM compared to OFAT method. As for the result, all factors were significant in PBD, while only 4 factors were significant in biodegradation of PCO (pH, nitrogen concentration, yeast extract and initial substrate concentration). Using OFAT, the most effective microbial community examined was able to degrade 94.42% and 86.83% (from an initial concentration of 0.5% (v/v)) of WCO and PCO, respectively, within 7 days. Using RSM, 94.99% and 79.77% degradation of WCO and PCO was achieved in 6 days. The significant interaction for the RSM in biodegradation activity between temperature and WCO concentration in WCO media were exhibited. Meanwhile, in biodegradation of PCO the significant factors were between (1) pH and PCO concentration, (2) nitrogen concentration and yeast extract, (3) nitrogen concentration and PCO concentration. The models for the RSM were validated for both WCO and PCO media and it showed no significant difference between experimental and predicted values. The efficiency of canola oil biodegradation achieved in this study provides support for the development of practical strategies for efficient bioremediation in the Antarctic environment.
  4. Hussein AO, Khalil K, Mohd Zaini NA, Al Atya AK, Aqma WS
    PeerJ, 2025;13:e18541.
    PMID: 39790459 DOI: 10.7717/peerj.18541
    Lactic acid bacteria (LAB), known for their health benefits, exhibit antimicrobial and antibiofilm properties. This study investigated the cell-free supernatant (CFS) of Lactobacillus spp., particularly L. plantarum KR3, against the common foodborne pathogens S. aureus, E. coli and Salmonella spp. Lactobacillus strains were isolated from cheese, pickles and yoghurt. They were then identified by morphological, physiological and biochemical characteristics and confirmed by 16S rRNA gene sequencing. Culture supernatants from seven lactobacilli isolates showed varying inhibitory activities. Notably, L. plantarum KR3 and L. pentosus had the highest bacteriocin gene counts. L. plantarum KR3 CFS demonstrated significant antibacterial activity, with inhibition zones of 20 ± 0.34 mm for S. aureus, 23 ± 1.64 mm for E. coli, and 17.1 ± 1.70 mm for Salmonella spp. The CFS also exhibited substantial antibiofilm activity, with 59.12 ± 0.03% against S. aureus, 83.50 ± 0.01% against E. coli, and 60. ± 0.04% against Salmonella spp., which were enhanced at the minimum inhibitory concentration (MIC). These results highlighted the potential of L. plantarum KR3 in antimicrobial applications, however, further research is needed to evaluate its viability and functional properties for probiotic use. Additionally, the CFS demonstrated exceptional thermal stability, reinforcing its promise as an antimicrobial agent.
  5. Abdul Khalil K, Mustafa S, Mohammad R, Bin Ariff A, Shaari Y, Abdul Manap Y, et al.
    Biomed Res Int, 2014;2014:787989.
    PMID: 24527457 DOI: 10.1155/2014/787989
    This study was undertaken to optimize skim milk and yeast extract concentration as a cultivation medium for optimal Bifidobacteria pseudocatenulatum G4 (G4) biomass and β -galactosidase production as well as lactose and free amino nitrogen (FAN) balance after cultivation period. Optimization process in this study involved four steps: screening for significant factors using 2(3) full factorial design, steepest ascent, optimization using FCCD-RSM, and verification. From screening steps, skim milk and yeast extract showed significant influence on the biomass production and, based on the steepest ascent step, middle points of skim milk (6% wt/vol) and yeast extract (1.89% wt/vol) were obtained. A polynomial regression model in FCCD-RSM revealed that both factors were found significant and the strongest influence was given by skim milk concentration. Optimum concentrations of skim milk and yeast extract for maximum biomass G4 and β -galactosidase production meanwhile low in lactose and FAN balance after cultivation period were 5.89% (wt/vol) and 2.31% (wt/vol), respectively. The validation experiments showed that the predicted and experimental values are not significantly different, indicating that the FCCD-RSM model developed is sufficient to describe the cultivation process of G4 using skim-milk-based medium with the addition of yeast extract.
  6. Yusuf I, Ahmad SA, Phang LY, Syed MA, Shamaan NA, Abdul Khalil K, et al.
    J Environ Manage, 2016 Dec 01;183:182-95.
    PMID: 27591845 DOI: 10.1016/j.jenvman.2016.08.059
    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes.
  7. Abu Bakar K, Khalil K, Lim YN, Yap YC, Appadurai M, Sidhu S, et al.
    Front Pediatr, 2020;8:164.
    PMID: 32351921 DOI: 10.3389/fped.2020.00164
    Background: Adrenal insufficiency can result from impaired functions at all levels of hypothalamic-pituitary-adrenal (HPA) axis. We here studied risk factors associated with adrenal insufficiency in children receiving prolonged exogenous steroid treatment for nephrotic syndrome. Method:We performed low-dose Synacthen tests (LDSTs, 0.5 μg/m2) in children with steroid-sensitive nephrotic syndrome 4-6 weeks after discontinuation of the corticosteroid therapy. We measured early morning serum cortisol levels at baseline and at intervals of 10, 20, 30, and 60 min following the stimulation test. We defined normal HPA axis stimulation responses as those with peak cortisol cut-off values >550 nmol/L. Result:We enrolled 37 children for this study research. All children enrolled had normal early morning cortisol levels. However, 13 (35.1%) demonstrated HPA axis suppression (by LDST) 4-+6 weeks after discontinuation of oral prednisolone. Nephrotic syndrome diagnosed before 5 years of age (OR, 0.75; 95% CI, 0.57-0.99; p = 0.043), and steroid-dependence [OR, 5.58; 95% confidence interval (CI), 1.06-29.34; p = 0.042] were associated with increased risk of developing adrenal suppression after steroid discontinuation. Conclusion:HPA axis suppression, may go unnoticed without proper screening. A normal early morning cortisol level (275-555 nmol/L) does not exclude adrenal insufficiency in children with steroid-sensitive nephrotic syndrome. Further screening with LDSTs, particularly in children younger than 5 years at diagnosis, may be warranted.
  8. Lee GLY, Zakaria NN, Convey P, Futamata H, Zulkharnain A, Suzuki K, et al.
    Int J Mol Sci, 2020 Dec 09;21(24).
    PMID: 33316871 DOI: 10.3390/ijms21249363
    Study of the potential of Antarctic microorganisms for use in bioremediation is of increasing interest due to their adaptations to harsh environmental conditions and their metabolic potential in removing a wide variety of organic pollutants at low temperature. In this study, the psychrotolerant bacterium Rhodococcus sp. strain AQ5-07, originally isolated from soil from King George Island (South Shetland Islands, maritime Antarctic), was found to be capable of utilizing phenol as sole carbon and energy source. The bacterium achieved 92.91% degradation of 0.5 g/L phenol under conditions predicted by response surface methodology (RSM) within 84 h at 14.8 °C, pH 7.05, and 0.41 g/L ammonium sulphate. The assembled draft genome sequence (6.75 Mbp) of strain AQ5-07 was obtained through whole genome sequencing (WGS) using the Illumina Hiseq platform. The genome analysis identified a complete gene cluster containing catA, catB, catC, catR, pheR, pheA2, and pheA1. The genome harbours the complete enzyme systems required for phenol and catechol degradation while suggesting phenol degradation occurs via the β-ketoadipate pathway. Enzymatic assay using cell-free crude extract revealed catechol 1,2-dioxygenase activity while no catechol 2,3-dioxygenase activity was detected, supporting this suggestion. The genomic sequence data provide information on gene candidates responsible for phenol and catechol degradation by indigenous Antarctic bacteria and contribute to knowledge of microbial aromatic metabolism and genetic biodiversity in Antarctica.
  9. Zakaria NN, Gomez-Fuentes C, Abdul Khalil K, Convey P, Roslee AFA, Zulkharnain A, et al.
    Microorganisms, 2021 Jun 03;9(6).
    PMID: 34205164 DOI: 10.3390/microorganisms9061213
    Hydrocarbon pollution is widespread around the globe and, even in the remoteness of Antarctica, the impacts of hydrocarbons from anthropogenic sources are still apparent. Antarctica's chronically cold temperatures and other extreme environmental conditions reduce the rates of biological processes, including the biodegradation of pollutants. However, the native Antarctic microbial diversity provides a reservoir of cold-adapted microorganisms, some of which have the potential for biodegradation. This study evaluated the diesel hydrocarbon-degrading ability of a psychrotolerant marine bacterial consortium obtained from the coast of the north-west Antarctic Peninsula. The consortium's growth conditions were optimised using one-factor-at-a-time (OFAT) and statistical response surface methodology (RSM), which identified optimal growth conditions of pH 8.0, 10 °C, 25 ppt NaCl and 1.5 g/L NH4NO3. The predicted model was highly significant and confirmed that the parameters' salinity, temperature, nitrogen concentration and initial diesel concentration significantly influenced diesel biodegradation. Using the optimised values generated by RSM, a mass reduction of 12.23 mg/mL from the initial 30.518 mg/mL (4% (w/v)) concentration of diesel was achieved within a 6 d incubation period. This study provides further evidence for the presence of native hydrocarbon-degrading bacteria in non-contaminated Antarctic seawater.
  10. Ibrahim S, Abdul Khalil K, Zahri KNM, Gomez-Fuentes C, Convey P, Zulkharnain A, et al.
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858796 DOI: 10.3390/molecules25173878
    With the progressive increase in human activities in the Antarctic region, the possibility of domestic oil spillage also increases. Developing means for the removal of oils, such as canola oil, from the environment and waste "grey" water using biological approaches is therefore desirable, since the thermal process of oil degradation is expensive and ineffective. Thus, in this study an indigenous cold-adapted Antarctic soil bacterium, Rhodococcus erythropolis strain AQ5-07, was screened for biosurfactant production ability using the multiple approaches of blood haemolysis, surface tension, emulsification index, oil spreading, drop collapse and "MATH" assay for cellular hydrophobicity. The growth kinetics of the bacterium containing different canola oil concentration was studied. The strain showed β-haemolysis on blood agar with a high emulsification index and low surface tension value of 91.5% and 25.14 mN/m, respectively. Of the models tested, the Haldane model provided the best description of the growth kinetics, although several models were similar in performance. Parameters obtained from the modelling were the maximum specific growth rate (qmax), concentration of substrate at the half maximum specific growth rate, Ks% (v/v) and the inhibition constant Ki% (v/v), with values of 0.142 h-1, 7.743% (v/v) and 0.399% (v/v), respectively. These biological coefficients are useful in predicting growth conditions for batch studies, and also relevant to "in field" bioremediation strategies where the concentration of oil might need to be diluted to non-toxic levels prior to remediation. Biosurfactants can also have application in enhanced oil recovery (EOR) under different environmental conditions.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links