Application of urea manufacturing wastewater to teak (Tectona grandis) trees, a fast growing tropical timber plants, is an environmentally-friendly and cost-effective alternative for treatment of nitrogen-rich wastewater. However, the plant growth is strongly limited by lack of phosphorus (P) and potassium (K) elements when the plants are irrigated with wastewater containing high concentration of nitrogen (N). A greenhouse experiment was conducted to optimize the efficiency of teak-based remediation systems in terms of nutrient balance. Twelve test solutions consisted of 4 levels of P (95, 190, 570, 1140 mgL-1) and 3 levels of K (95, 190, 570 mgL-1) with a constant level of N (190 mgL-1) were applied to teak seedlings every four days during the study period. Evapotranspiration rate, nutrient removal percentage, leaf surface area, dry weight and nutrient contents of experimental plants were determined and compared with those grown in control solution containing only N (N:P:K = 1:0:0). Teak seedlings grown in units with 1:0.5:1 N:P:K ratio were highly effective at nutrient removal upto 47%, 48% and 49% for N, P and K, respectively. Removal efficiency of teak plants grown in other experimental units decreased with increasing P and K concentrations in test solutions. The lowest nutrient removal and plant growth were recorded in units with 1:6:0.5 N:P:K ratio which received the highest ratio of P to K. The findings indicated that teak seedlings functioned effectively as phytoremediation plants for N-rich wastewater treatment when they were being supplied with proper concentrations of P and K.
Microplastics (MPs) with the size of 1 μm-5 mm are pollutants of great concern ubiquitously found in the environment. Existing efforts have found that most of the MPs present in the seas mainly originated from land via riverine inputs. Asian rivers are known to be among the top in microplastic emissions. However, field data are scarce, especially in Malaysia. This study presents the distribution and characteristics of MPs in the surface water of two major river basins of Malaysia, namely Langat River (West Coast/Straits of Malacca) and Kelantan River (East Coast/South China Sea). Water samples were collected at 21-22 locations in Kelantan and Langat rivers, covering the river, estuary and sea. MPs were physically classified based on sizes, shapes, colours and surface morphology (SEM-EDS). The average of 179.6 items/L and 1464.8 items/L of MPs had been quantified from Kelantan and Langat rivers, respectively. Fibre (91.90%) was highly recorded at Kelantan, compared to Langat whereby both fibre (59.21%) and fragment (38.87%) were prevalence. Anthropogenic activities and urbanised areas contribute to high microplastic abundance, especially in the Langat River. Micro-FTIR analysis identified 14 polymers in Kelantan River, whereas 20 polymers were found in Langat River. Polypropylene, polyethylene, polyethylene terephthalate, nylon, phenoxy resins, poly(methyl acrylate), poly(methyl methacrylate), polystyrene, polytetrafluoroethylene, polyurethane and rayon were discovered in both rivers, although only polyethylene was significant (>1 ppm) when further analysed using pyrolysis-GC/MS. Correlation analysis and multiple linear regression were used to explain the relationship between water quality and MP abundance, suggesting only turbidity was positively significant to the microplastic occurrence. This comprehensive study is first to suggest a full-scale monitoring protocol for MPs in Malaysian riverine system and is significant in understanding MPs abundance in correlation to in-situ environmental factors. Consequently, this will allow the right authorities to develop mitigation strategies to address riverine plastic pollution in major river basins in Malaysia and the South East Asia.
Thin film composite (TFC) reverse osmosis (RO) membrane shows good promise for treating wastewater containing endocrine disrupting chemical (EDC) pollutants. The incorporation of functional materials with exceptional structural and physico-chemical properties offers opportunities for the membranes preparation with enhanced permselectivity and better antifouling properties. The present study aims to improve the EDC removal efficiency of TFC RO membrane using two-dimensional titania nanosheets (TNS). RO membrane was prepared by incorporating TNS in the dense layer of polyamide (PA) layer to form thin film nanocomposite (TFN) membrane. The TNS loading was varied and the influences on membrane morphology, surface hydrophilicity, surface charge, as well as water permeability and rejection of EDC were investigated. The results revealed that the inclusion of TNS in the membrane resulted in the increase of water permeability and EDC rejection. When treating the mixture of bisphenol A (BPA) and caffeine at 100 ppm feed concentration, the TFN membrane incorporated with 0.05% TNS achieved water permeability of 1.45 L/m2·h·bar, which was 38.6% higher than that of unmodified TFC membrane, while maintaining satisfactory rejection of >97%. The enhancement of water permeability for TFN membrane can be attributed to their hydrophilic surface and unique nanochannel structure created by the nanoscale interlayer spacing via staking of TiO2 nanosheets. Furthermore, the 0.05TFN membrane exhibited excellent fouling resistance towards BPA and caffeine pollutants with almost 100% flux recovery for three cycles of operations.
Plastic pollution in aquatic ecosystems has become a critical global environmental challenge, threatening biodiversity, water quality, and human health. This study investigates macroplastics distribution and characterization in the highly polluted Klang River, Malaysia, and proposes a protocol to compute total macroplastic yield in the river basin. A total of 240 macroplastic items were collected over a 20-km stretch from the river mouth inland, with an average of 0.91 ± 0.80 g/item (dry weight). Scanning Electron Microscopy revealed that the macroplastics had weathered slowly in the environment, potentially breaking down into smaller microplastic particles. Biofilms and dead phytoplankton were observed on the plastic surfaces, suggesting that plastic debris may act as vectors for other pollutants. The study used SWAT modelling to simulate physical processes in the Klang River Basin and compute pollutant loads through a loading computation procedure. A macroplastic rating curve was created using river discharge, macroplastic loadings, and associate parameters to estimate plastic loading in the river. The fitted equation models macroplastic loading as a function of river discharge and width, expressed as: log(y) = 1.88216-7.36528log(x) - 4.00491log(x2). Here, log(x) represents the ratio of river discharge to river width, while log(y) denotes macroplastic loading adjusted for sampler width and river width. Results indicated that macroplastic transport in the river system is linked to flow rates and sediment yield, which vary due to topographical factors, with an estimated macroplastics yield in the Klang River Basin of 11,600 kg/day. The findings suggest that a river-specific monitoring programs should be conducted to generate comprehensive datasets, integrating both macroplastics and microplastics abundance, which can be utilized for projecting plastic emissions from Malaysian rivers and comparing data with other river basins in the Southeast Asia.
INTRODUCTION: Diabetic foot infection, a complication that is associated with lower-limb amputation, incurs a huge economic burden to the hospital and health care system of Malaysia. The bacteriological profile of pathogens in diabetic foot infections in Malaysia has been sparsely studied. We investigated the microbiology of diabetic foot infections in patients admitted to the district hospitals on the east coast of Malaysia.
METHODS: A retrospective analysis was conducted in three district hospitals (Hospital Kuala Lipis, Hospital Bentong and Hospital Raub) in Malaysia from 1st of January 2016 to 31st December 2016. The clinical specimens were cultured using Clinical and Laboratory Standards Institute (CLSI) guidelines. Antibiotic sensitivity testing to different antibiotics was carried out using the disc diffusion method.
RESULT: A total of 188 pathogens were isolated from 173 patients, with an average of 1.09 pathogens per lesion. Majority of the pathogens isolated were gram negative pathogens (73.4%). The most commonly isolated pathogens were Staphylococcus aureus (17.5%). This was followed by Klebsiella spp. (17%), Pseudomonas spp. (15.4%) and Proteus spp. (13.8%). Gram positive pathogens were sensitive to most of the antibiotics tested except penicillin and fusidic acid. Gram negative pathogens were sensitive to all antibiotics tested except ampicillin and amoxicillin/clavulanic acid. Amikacin provide coverage for all gram negative pathogens in DFI.
CONCLUSION: For the management of patient with infection in diabetic foot, the choice of antibiotic therapy depends on the sensitivity of the pathogens, the severity of the infection, the patient's allergies history, toxicity and excretion of the antibiotics.
The emergence and spread of antimicrobial resistance have been of serious concern to human health and the management of bacterial infectious diseases. Effective treatment of these diseases requires the development of novel therapeutics, preferably free of side effects. In this regard, natural products are frequently conceived to be potential alternative sources for novel antibacterial compounds. Herein, we have evaluated the antibacterial activity of the epicarp extracts of the Malaysian cultivar of yellow rambutan fruit (Nephelium lappaceum L.) against six pathogens namely, Bacillus subtilis, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Klebsiella pneumoniae and Salmonella enterica. Among a series of solvent extracts, fractions of ethyl acetate and acetone have revealed significant activity towards all tested strains. Chemical profiling of these fractions, via HPLC, LC-MS and GC-MS, has generated a library of potentially bioactive compounds. Downstream virtual screening, pharmacological prediction, and receptor-ligand molecular dynamics simulation have eventually unveiled novel potential antibacterial compounds, which can be extracted for medicinal use. We report compounds like catechin, eplerenone and oritin-4-beta-ol to be computationally inhibiting the ATP-binding domain of the chaperone, DnaK of P. aeruginosa and MRSA. Thus, our work follows the objective to propose new antimicrobials capable of perforating the barrier of resistance posed by both the gram positives and the negatives.
Introduction: COVID-19 disease has resulted in suspension of all nonurgent routine dental treatments. In view of COVID-19 situation, social distancing, movement restriction orders, and affected health care systems, there is an urgent need to resume and deliver oral health care remotely. Hence, alternative means of dental care should be available for both patients and dentists. Therefore, this study aims to assess patients' readiness for teledentistry in Malaysian urban population attending an undergraduate teaching university. Methods: A cross-sectional study was conducted among 631 adult patients visiting the Faculty of Dentistry, SEGi University, from January 2020 to May 2021 in Selangor, Malaysia. A validated, self-administered, 5-point Likert scale online questionnaire comprising five domains was administered. (1) Patients' demographics and dental history, (2) patients' access to teledentistry, (3) patients' understanding towards teledentistry, (4) patients' willingness, and (5) barriers in using teledentistry were used to collect the required information. Results: Six hundred and thirty-one (n = 631) participants responded to the questionnaire. Ninety percent of patients were able to connect to Wi-Fi services independently and 77% participants were comfortable using online communication platforms. Seventy-one percent of the participants agreed that video and telephone clinics can reduce chances of infection rather than face-to-face consultation during the pandemic. Fifty-five percent of patients felt that virtual clinics would save time and 60% thought it could reduce travelling costs. Fifty-one percent showed their willingness to use video or telephone clinics when implemented at onsite clinics. Conclusion: Our study shows the readiness of patients to accept teledentistry as an alternative method of oral care if appropriate training and education are provided. The results of this study have prompted an increase in patients' education and shown a need to train clinicians and patients to integrate this technology at SEGi University. This might facilitate unhindered dental consultation and care in all situations.