Displaying all 9 publications

Abstract:
Sort:
  1. Lim SYM, Al Bishtawi B, Lim W
    Eur J Drug Metab Pharmacokinet, 2023 May;48(3):221-240.
    PMID: 37093458 DOI: 10.1007/s13318-023-00826-8
    The major human liver drug metabolising cytochrome P450 (CYP) enzymes are downregulated during inflammation and infectious disease state, especially during coronavirus disease 2019 (COVID-19) infection. The influx of proinflammatory cytokines, known as a 'cytokine storm', during severe COVID-19 leads to the downregulation of CYPs and triggers new cytokine release, which further dampens CYP expression. Impaired drug metabolism, along with the inevitable co-administration of drugs or 'combination therapy' in patients with COVID-19 with various comorbidities, could cause drug-drug interactions, thus worsening the disease condition. Genetic variability or polymorphism in CYP2C9 across different ethnicities could contribute to COVID-19 susceptibility. A number of drugs used in patients with COVID-19 are inducers or inhibitors of, or are metabolised by, CYP2C9, and co-administration might cause pharmacokinetic and pharmacodynamic interactions. It is also worth mentioning that some of the COVID-19 drug interactions are due to altered activity of other CYPs including CYP3A4. Isoniazid/rifampin for COVID-19 and tuberculosis co-infection; lopinavir/ritonavir and cobicistat/remdesivir combination therapy; or multi-drug therapy including ivermectin, azithromycin, montelukast and acetylsalicylic acid, known as TNR4 therapy, all improved recovery in patients with COVID-19. However, a combination of CYP2C9 inducers, inhibitors or both, and plausibly different CYP isoforms could lead to treatment failure, hepatotoxicity or serious side effects including thromboembolism or bleeding, as observed in the combined use of azithromycin/warfarin. Further, herbs that are CYP2C9 inducers and inhibitors, showed anti-COVID-19 properties, and in silico predictions postulated that phytochemical compounds could inhibit SARS-CoV-2 virus particles. COVID-19 vaccines elicit immune responses that activate cytokine release, which in turn suppresses CYP expression that could be the source of compromised CYP2C9 drug metabolism and the subsequent drug-drug interaction. Future studies are recommended to determine CYP regulation in COVID-19, while recognising the involvement of CYP2C9 and possibly utilising CYP2C9 as a target gene to tackle the ever-mutating SARS-CoV-2.
  2. Lim S, Alshagga M, Ong CE, Chieng JY, Pan Y
    Hum Exp Toxicol, 2020 Jun;39(6):785-796.
    PMID: 32054340 DOI: 10.1177/0960327120905959
    Cytochrome P450 4B1 (CYP4B1) plays crucial roles in biotransforming of xenobiotics. Its predominant extrahepatic expression has been associated with certain tissue-specific toxicities. However, the expressions of CYP4B1 in various cancers and hence their potential roles in cancer development were inclusive. In this work, existing knowledge on expression and regulation of CYP4B1 gene and protein, catalysis of CYP4B1, association of CYP4B1 with cancers, contradicting findings about human CYP4B1 activities as well as the employing CYP4B1 in suicide gene approach for cancer treatment were reviewed. To date, it appears that there is a wide spectrum of tissue distribution of CYP4B1 with lungs as the predominant sites. Several nuclear receptors are possibly responsible for regulating its gene expression. The involvement of CYP4B1 in cancer was considered via activation of procarcinogens and neovascularization. However, human CYP4B1 was found to be inactive due to a substitution of proline with serine at position 427. Suicide gene approach combining reengineered CYP4B1 and prodrug 4-ipomeanol (4-IPO) has shown a promising potential for targeted cancer therapy. Further studies should focus on the verification of human CYP4B1 catalytic activities. More compounds with similar structure as 4-IPO should be tested to identify more alternative agents for the suicide gene approach in cancer treatment.
  3. Lim SYM, Alshagga MA, Alshawsh MA, Ong CE, Pan Y
    Drug Metab Pers Ther, 2021 Aug 17;37(1).
    PMID: 35146975 DOI: 10.1515/dmpt-2021-1000196
    OBJECTIVES: Khat, a natural amphetamine-like psychostimulant plant, are widely consumed globally. Concurrent intake of khat and xenobiotics may lead to herb-drug interactions and adverse drug reactions (ADRs). This study is a continuation of our previous study, targeted to evaluate the in vitro inhibitory effects of khat ethanol extract (KEE) on human cytochrome (CYP) 1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, and CYP3A5, major human drug metabolizing enzymes.

    METHODS: In vitro fluorescence enzyme assays were employed to assess CYPs inhibition with the presence and absence of various KEE concentrations.

    RESULTS: KEE reversibly inhibited CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 but not CYP1A2 with IC50 values of 25.5, 99, 4.5, 21, 27, 17, and 10 μg/mL respectively. No irreversible inhibition of KEE on all the eight CYPs were identified. The Ki values of CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 were 20.9, 85, 4.8, 18.3, 59.3, 3, and 21.7 μg/mL, respectively. KEE inhibited CYP2B6 via competitive or mixed inhibition; CYP2E1 via un-competitive or mixed inhibition; while CYP2A6, CYP2C8, CYP2C19, CYP2J2 and CYP3A5 via non-competitive or mixed inhibition.

    CONCLUSIONS: Caution should be taken by khat users who are on medications metabolized by CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, and CYP3A5.

  4. Lim SYM, Alshagga M, Kong C, Alshawsh MA, Alshehade SA, Pan Y
    Arch Toxicol, 2022 12;96(12):3163-3174.
    PMID: 36175686 DOI: 10.1007/s00204-022-03382-3
    With more than 80 cytochrome P450 (CYP) encoding genes found in the nematode Caenorhabditis elegans (C. elegans), the cyp35 genes are one of the important genes involved in many biological processes such as fatty acid synthesis and storage, xenobiotic stress response, dauer and eggshell formation, and xenobiotic metabolism. The C. elegans CYP35 subfamily consisted of A, B, C, and D, which have the closest homolog to human CYP2 family. C. elegans homologs could answer part of the hunt for human disease genes. This review aims to provide an overview of CYP35 in C. elegans and their human homologs, to explore the roles of CYP35 in various C. elegans biological processes, and how the genes of cyp35 upregulation or downregulation are influenced by biological processes, upon exposure to xenobiotics or changes in diet and environment. The C. elegans CYP35 gene expression could be upregulated by heavy metals, pesticides, anti-parasitic and anti-chemotherapeutic agents, polycyclic aromatic hydrocarbons (PAHs), nanoparticles, drugs, and organic chemical compounds. Among the cyp35 genes, cyp-35A2 is involved in most of the C. elegans biological processes regulation. Further venture of cyp35 genes, the closest homolog of CYP2 which is the largest family of human CYPs, may have the power to locate cyps gene targets, discovery of novel therapeutic strategies, and possibly a successful medical regime to combat obesity, cancers, and cyps gene-related diseases.
  5. Lim SYM, Loo JSE, Alshagga M, Alshawsh MA, Ong CE, Pan Y
    Toxicol Rep, 2022;9:759-768.
    PMID: 36518400 DOI: 10.1016/j.toxrep.2022.03.040
    Cathinone is the psychostimulatory major active ingredient of khat (Catha edulis Forsk) and are often co-abused with alcohols and polydrugs. With the increased consumption of khat and cathinones on a global scale, efforts should be channelled into understanding and minimising the excruciating effects of possible khat-drug interactions. This study aimed to determine the in vitro inhibitory effects of cathinone on CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 and the in silico identification of their type of interactions and residues involved. The activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 were examined by fluorescence based assays using recombinant cDNA-expressed human CYPs in Vivid® P450 screening kits. Cathinone reversibly inhibited CYP1A2, CYP2A6 and CYP3A5 via competitive, uncompetitive and noncompetitive modes with inhibition constant (Ki) values of 57.12, 13.75 and 23.57 µM respectively. Cathinone showed negligible inhibitory effects on CYP2B6, CYP2C8, CYP2C19, CYP2E1 and CYP2J2. Cathinone showed negligible time dependent inhibition on all 8 CYPs. Docking studies was performed on cathinone with CYP1A2, CYP2A6 and CYP3A5 following their inhibition in vitro. Cathinone is bound to a few key amino acid residues in the active sites while π-π interactions are formed in aromatic clusters of CYP1A2 and CYP3A5. These findings offer valuable reference for the use of cathinones and khat when combined with therapeutic drugs that are metabolised by CYP enzymes especially patients on medications metabolised by CYP1A2, CYP2A6 and CYP3A5.
  6. Lim SYM, Lim W, Peter AP, Pan Y, Alshagga M, Alshawsh MA
    J Appl Toxicol, 2024 Oct 04.
    PMID: 39367649 DOI: 10.1002/jat.4707
    The CYP33 family in Caenorhabditis elegans is integral to processes like xenobiotic detoxification, eicosanoid regulation, nanotoxicity response and spermatogenesis. Limited research on C. elegans CYP33 suggests its functions are similar to human CYP33, indicating conserved roles in metabolism and disease. This review examines C. elegans CYP33 enzymes, especially CYP-33E1 and CYP-33E2, and their human homologues, focusing on their roles in eicosanoid biosynthesis, xenobiotic metabolism, nanotoxicity and spermatogenesis. Understanding these enzymes enhances insights into cytochrome P450 biology, metabolism and cyp-associated diseases.
  7. Lim SYM, Loo JSE, Alshagga M, Alshawsh MA, Ong CE, Pan Y
    Int J Toxicol, 2022;41(5):355-366.
    PMID: 35658727 DOI: 10.1177/10915818221103790
    Cathine is the stable form of cathinone, the major active compound found in khat (Catha edulis Forsk) plant. Khat was found to inhibit major phase I drug metabolizing cytochrome P450 (CYP) enzyme activities in vitro and in vivo. With the upsurge of khat consumption and the potential use of cathine to combat obesity, efforts should be channelled into understanding potential cathine-drug interactions, which have been rather limited. The present study aimed to assess CYPs activity and inhibition by cathine in a high-throughput in vitro fluorescence-based enzyme assay and molecular docking analysis to identify how cathine interacts within various CYPs' active sites. The half maximal inhibitory concentration (IC50) values of cathine determined for CYP2A6 and CYP3A4 were 80 and 90 μM, while CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP2J2 and CYP3A5 showed no significant inhibition. Furthermore, in Ki analysis, the Lineweaver-Burk plots depicted non-competitive mixed inhibition of cathine on both CYP2A6 and CYP3A4 with Ki value of 63 and 100 μM, respectively. Cathine showed negligible time-dependent inhibition on CYPs. Further, molecular docking studies showed that cathine was bound to CYP2A6 via hydrophobic, hydrogen and π-stacking interactions and formed hydrophobic and hydrogen bonds with active site residues in CYP3A4. Both molecular docking prediction and in vitro outcome are in agreement, granting more detailed insights for predicting CYPs metabolism besides the possible cathine-drug interactions. Cathine-drug interactions may occur with concomitant consumption of khat or cathine-containing products with medications metabolized by CYP2A6 and CYP3A4.
  8. Alshehade SA, Al Zarzour RH, Murugaiyah V, Lim SYM, El-Refae HG, Alshawsh MA
    Saudi Pharm J, 2022 Nov;30(11):1572-1588.
    PMID: 36465851 DOI: 10.1016/j.jsps.2022.09.001
    Non-alcoholic fatty liver disease (NAFLD) is one of the most common complications of a metabolic syndrome caused by excessive accumulation of fat in the liver. Orthosiphon stamineus also known as Orthosiphon aristatus is a medicinal plant with possible potential beneficial effects on various metabolic disorders. This study aims to investigate the in vitro inhibitory effects of O. stamineus on hepatic fat accumulation and to further use the computational systems pharmacology approach to identify the pharmacokinetic properties of the bioactive compounds of O. stamineus and to predict their molecular mechanisms against NAFLD.

    METHODS: The effects of an ethanolic extract of O. stamineus leaves on cytotoxicity, fat accumulation and antioxidant activity were assessed using HepG2 cells. The bioactive compounds of O. stamineus were identified using LC/MS and two bioinformatics databases, namely the Traditional Chinese Medicine Integrated Database (TCMID) and the Bioinformatics Analysis Tool for the Molecular Mechanism of Traditional Chinese Medicine (BATMAN-TCM). Pathway enrichment analysis was performed on the predicted targets of the bioactive compounds to provide a systematic overview of the molecular mechanism of action, while molecular docking was used to validate the predicted targets.

    RESULTS: A total of 27 bioactive compounds corresponding to 50 potential NAFLD-related targets were identified. O. stamineus exerts its anti-NAFLD effects by modulating a variety of cellular processes, including oxidative stress, mitochondrial β-oxidation, inflammatory signalling pathways, insulin signalling, and fatty acid homeostasis pathways. O. stamineus is significantly targeting many oxidative stress regulators, including JNK, mammalian target of rapamycin (mTOR), NFKB1, PPAR, and AKT1. Molecular docking analysis confirmed the expected high affinity for the potential targets, while the in vitro assay indicates the ability of O. stamineus to inhibit hepatic fat accumulation.

    CONCLUSION: Using the computational systems pharmacology approach, the potentially beneficial effect of O. stamineus in NAFLD was indicated through the combination of multiple compounds, multiple targets, and multicellular components.

  9. Lim SYM, Binti Azidin AR, Ung YT, Al-Shagga M, Alshawsh MA, Mohamed Z, et al.
    Eur J Drug Metab Pharmacokinet, 2019 Jun;44(3):423-431.
    PMID: 30306496 DOI: 10.1007/s13318-018-0518-2
    BACKGROUND AND OBJECTIVE: A significant number of people worldwide consume khat on daily basis. Long term of khat chewing has shown negative impact on several organ systems. It is likely that these people are co-administered khat preparations and conventional medication, which may lead to khat-drug interactions. This study aimed to reveal the inhibitory potencies of khat ethanol extract (KEE) and its major active ingredient (cathinone) on human cytochrome P450 (CYP) 2C9, CYP2D6, and CYP3A4 enzymes activities, which are collectively responsible for metabolizing 70-80% clinically used drugs.

    METHODS: In vitro fluorescence-based enzyme assays were developed and the CYP enzyme activities were quantified in the presence and absence of KEE and cathinone employing Vivid® CYP450 Screening Kits.

    RESULTS: KEE inhibited human CYP2C9, CYP2D6, and CYP3A4 enzyme activities with IC50 of 42, 62, and 18 μg/ml. On the other hand, cathinone showed negligible inhibitory effect on these CYPs. Further experiments with KEE revealed that KEE inhibited CYP2C9 via non-competitive or mixed mode with Ki of 14.7 μg/ml, CYP2D6 through competitive or mixed mode with Ki of 17.6 μg/ml, CYP3A4 by mixed inhibition mode with Ki of 12.1 μg/ml.

    CONCLUSION: Khat-drug interactions are possible due to administration of clinical drugs metabolized by CYP2C9/CYP2D6/CYP3A4 together with khat chewing. Further in vivo studies are required to confirm our findings and identify the causative constituents of these inhibitory effects.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links