Displaying all 10 publications

Abstract:
Sort:
  1. Luby SP
    Antiviral Res, 2013 Oct;100(1):38-43.
    PMID: 23911335 DOI: 10.1016/j.antiviral.2013.07.011
    Nipah virus, a paramyxovirus whose wildlife reservoir is Pteropus bats, was first discovered in a large outbreak of acute encephalitis in Malaysia in 1998 among persons who had contact with sick pigs. Apparently, one or more pigs was infected from bats, and the virus then spread efficiently from pig to pig, then from pigs to people. Nipah virus outbreaks have been recognized nearly every year in Bangladesh since 2001 and occasionally in neighboring India. Outbreaks in Bangladesh and India have been characterized by frequent person-to-person transmission and the death of over 70% of infected people. Characteristics of Nipah virus that increase its risk of becoming a global pandemic include: humans are already susceptible; many strains are capable of limited person-to-person transmission; as an RNA virus, it has an exceptionally high rate of mutation: and that if a human-adapted strain were to infect communities in South Asia, high population densities and global interconnectedness would rapidly spread the infection. Appropriate steps to estimate and manage this risk include studies to explore the molecular and genetic basis of respiratory transmission of henipaviruses, improved surveillance for human infections, support from high-income countries to reduce the risk of person-to-person transmission of infectious agents in low-income health care settings, and consideration of vaccination in communities at ongoing risk of exposure to the secretions and excretions of Pteropus bats.
  2. Luby SP, Gurley ES
    PMID: 22752412 DOI: 10.1007/82_2012_207
    All seven recognized human cases of Hendra virus (HeV) infection have occurred in Queensland, Australia. Recognized human infections have all resulted from a HeV infected horse that was unusually efficient in transmitting the virus and a person with a high exposure to infectious secretions. In the large outbreak in Malaysia where Nipah virus (NiV) was first identified, most human infections resulted from close contact with NiV infected pigs. Outbreak investigations in Bangladesh have identified drinking raw date palm sap as the most common pathway of NiV transmission from Pteropus bats to people, but person-to-person transmission of NiV has been repeatedly identified in Bangladesh and India. Although henipaviruses are not easily transmitted to people, these newly recognized, high mortality agents warrant continued scientific attention.
  3. Luby SP, Gurley ES, Hossain MJ
    Clin Infect Dis, 2009 Dec 1;49(11):1743-8.
    PMID: 19886791 DOI: 10.1086/647951
    Nipah virus (NiV) is a paramyxovirus whose reservoir host is fruit bats of the genus Pteropus. Occasionally the virus is introduced into human populations and causes severe illness characterized by encephalitis or respiratory disease. The first outbreak of NiV was recognized in Malaysia, but 8 outbreaks have been reported from Bangladesh since 2001. The primary pathways of transmission from bats to people in Bangladesh are through contamination of raw date palm sap by bats with subsequent consumption by humans and through infection of domestic animals (cattle, pigs, and goats), presumably from consumption of food contaminated with bat saliva or urine with subsequent transmission to people. Approximately one-half of recognized Nipah case patients in Bangladesh developed their disease following person-to-person transmission of the virus. Efforts to prevent transmission should focus on decreasing bat access to date palm sap and reducing family members' and friends' exposure to infected patients' saliva.
  4. Chowdhury S, Khan SU, Crameri G, Epstein JH, Broder CC, Islam A, et al.
    PLoS Negl Trop Dis, 2014 Nov;8(11):e3302.
    PMID: 25412358 DOI: 10.1371/journal.pntd.0003302
    BACKGROUND: Nipah virus (NiV) is an emerging disease that causes severe encephalitis and respiratory illness in humans. Pigs were identified as an intermediate host for NiV transmission in Malaysia. In Bangladesh, NiV has caused recognized human outbreaks since 2001 and three outbreak investigations identified an epidemiological association between close contact with sick or dead animals and human illness.

    METHODOLOGY: We examined cattle and goats reared around Pteropus bat roosts in human NiV outbreak areas. We also tested pig sera collected under another study focused on Japanese encephalitis.

    PRINCIPAL FINDINGS: We detected antibodies against NiV glycoprotein in 26 (6.5%) cattle, 17 (4.3%) goats and 138 (44.2%) pigs by a Luminex-based multiplexed microsphere assay; however, these antibodies did not neutralize NiV. Cattle and goats with NiVsG antibodies were more likely to have a history of feeding on fruits partially eaten by bats or birds (PR=3.1, 95% CI 1.6-5.7) and drinking palmyra palm juice (PR=3.9, 95% CI 1.5-10.2).

    CONCLUSIONS: This difference in test results may be due to the exposure of animals to one or more novel viruses with antigenic similarity to NiV. Further research may identify a novel organism of public health importance.

  5. Rahman MZ, Islam MM, Hossain ME, Rahman MM, Islam A, Siddika A, et al.
    Int J Infect Dis, 2021 Jan;102:144-151.
    PMID: 33129964 DOI: 10.1016/j.ijid.2020.10.041
    BACKGROUND: Nipah virus (NiV) infection, often fatal in humans, is primarily transmitted in Bangladesh through the consumption of date palm sap contaminated by Pteropus bats. Person-to-person transmission is also common and increases the concern of large outbreaks. This study aimed to characterize the molecular epidemiology, phylogenetic relationship, and the evolution of the nucleocapsid gene (N gene) of NiV.

    METHODS: We conducted molecular detection, genetic characterization, and Bayesian time-scale evolution analyses of NiV using pooled Pteropid bat roost urine samples from an outbreak area in 2012 and archived RNA samples from NiV case patients identified during 2012-2018 in Bangladesh.

    RESULTS: NiV-RNA was detected in 19% (38/456) of bat roost urine samples and among them; nine N gene sequences were recovered. We also retrieved sequences from 53% (21 out of 39) of archived RNA samples from patients. Phylogenetic analysis revealed that all Bangladeshi strains belonged to NiV-BD genotype and had an evolutionary rate of 4.64 × 10-4 substitutions/site/year. The analyses suggested that the strains of NiV-BD genotype diverged during 1995 and formed two sublineages.

    CONCLUSION: This analysis provides further evidence that the NiV strains of the Malaysian and Bangladesh genotypes diverged recently and continue to evolve. More extensive surveillance of NiV in bats and human will be helpful to explore strain diversity and virulence potential to infect humans through direct or person-to-person virus transmission.

  6. Lo MK, Lowe L, Hummel KB, Sazzad HM, Gurley ES, Hossain MJ, et al.
    Emerg Infect Dis, 2012 Feb;18(2):248-55.
    PMID: 22304936 DOI: 10.3201/eid1802.111492
    Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes fatal encephalitis in humans. The initial outbreak of NiV infection occurred in Malaysia and Singapore in 1998-1999; relatively small, sporadic outbreaks among humans have occurred in Bangladesh since 2001. We characterized the complete genomic sequences of identical NiV isolates from 2 patients in 2008 and partial genomic sequences of throat swab samples from 3 patients in 2010, all from Bangladesh. All sequences from patients in Bangladesh comprised a distinct genetic group. However, the detection of 3 genetically distinct sequences from patients in the districts of Faridpur and Gopalganj indicated multiple co-circulating lineages in a localized region over a short time (January-March 2010). Sequence comparisons between the open reading frames of all available NiV genes led us to propose a standardized protocol for genotyping NiV; this protcol provides a simple and accurate way to classify current and future NiV sequences.
  7. Jahir T, Pitchik HO, Rahman M, Sultana J, Shoab AKM, Nurul Huda TM, et al.
    Environ Res, 2021 Aug;199:111292.
    PMID: 33971132 DOI: 10.1016/j.envres.2021.111292
    Lead exposure is harmful at any time in life, but pre-natal and early childhood exposures are particularly detrimental to cognitive development. In Bangladesh, multiple household-level lead exposures pose risks, including turmeric adulterated with lead chromate and food storage in lead-soldered cans. We developed and evaluated an intervention to reduce lead exposure among children and their caregivers in rural Bangladesh. We conducted formative research to inform theory-based behavioral recommendations. Lead exposure was one of several topics covered in the multi-component intervention focused on early child development. Community health workers (CHWs) delivered the lead component of the intervention during group sessions with pregnant women and mother-child dyads (<15 months old) in a cluster-randomized trial. We administered household surveys at baseline (control n = 301; intervention n = 320) and 9 months later at endline (control n = 279; intervention n = 239) and calculated adjusted risk and mean differences for primary outcomes. We conducted two qualitative assessments, one after 3 months and a second after 9 months, to examine the feasibility and benefits of the intervention. At endline, the prevalence of lead awareness was 52 percentage points higher in the intervention arm compared to the control (adjusted risk difference: 0.52 [95% CI 0.46 to 0.61]). Safe turmeric consumption and food storage practices were more common in the intervention versus control arm at endline, with adjusted risk differences of 0.22 [0.10 to 0.32] and 0.13 [0.00 to 0.19], respectively. Semi-structured interviews conducted with a subset of participants after the intervention revealed that the perceived benefit of reducing lead exposure was high because of the long-term negative impacts that lead can have on child cognitive development. The study demonstrates that a group-based CHW-led intervention can effectively raise awareness about and motivate lead exposure prevention behaviors in rural Bangladesh. Future efforts should combine similar awareness-raising efforts with longer-term regulatory and structural changes to systematically and sustainably reduce lead exposure.
  8. Pitchik HO, Tofail F, Rahman M, Akter F, Sultana J, Shoab AK, et al.
    BMJ Glob Health, 2021 03;6(3).
    PMID: 33727278 DOI: 10.1136/bmjgh-2020-004307
    INTRODUCTION: In low- and middle-income countries, children experience multiple risks for delayed development. We evaluated a multicomponent, group-based early child development intervention including behavioural recommendations on responsive stimulation, nutrition, water, sanitation, hygiene, mental health and lead exposure prevention.

    METHODS: We conducted a 9-month, parallel, multiarm, cluster-randomised controlled trial in 31 rural villages in Kishoreganj District, Bangladesh. Villages were randomly allocated to: group sessions ('group'); alternating groups and home visits ('combined'); or a passive control arm. Sessions were delivered fortnightly by trained community members. The primary outcome was child stimulation (Family Care Indicators); the secondary outcome was child development (Ages and Stages Questionnaire Inventory, ASQi). Other outcomes included dietary diversity, latrine status, use of a child potty, handwashing infrastructure, caregiver mental health and knowledge of lead. Analyses were intention to treat. Data collectors were independent from implementers.

    RESULTS: In July-August 2017, 621 pregnant women and primary caregivers of children<15 months were enrolled (group n=160, combined n=160, control n=301). At endline, immediately following intervention completion (July-August 2018), 574 participants were assessed (group n=144, combined n=149, control n=281). Primary caregivers in both intervention arms participated in more play activities than control caregivers (age-adjusted means: group 4.22, 95% CI 3.97 to 4.47; combined 4.77, 4.60 to 4.96; control 3.24, 3.05 to 3.39), and provided a larger variety of play materials (age-adjusted means: group 3.63, 3.31 to 3.96; combined 3.81, 3.62 to 3.99; control 2.48, 2.34 to 2.59). Compared with the control arm, children in the group arm had higher total ASQi scores (adjusted mean difference in standardised scores: 0.39, 0.15 to 0.64), while in the combined arm scores were not significantly different from the control (0.25, -0.07 to 0.54).

    CONCLUSION: Our findings suggest that group-based, multicomponent interventions can be effective at improving child development outcomes in rural Bangladesh, and that they have the potential to be delivered at scale.

    TRIAL REGISTRATION NUMBER: The trial is registered in ISRCTN (ISRCTN16001234).

  9. Epstein JH, Anthony SJ, Islam A, Kilpatrick AM, Ali Khan S, Balkey MD, et al.
    Proc Natl Acad Sci U S A, 2020 11 17;117(46):29190-29201.
    PMID: 33139552 DOI: 10.1073/pnas.2000429117
    Nipah virus (NiV) is an emerging bat-borne zoonotic virus that causes near-annual outbreaks of fatal encephalitis in South Asia-one of the most populous regions on Earth. In Bangladesh, infection occurs when people drink date-palm sap contaminated with bat excreta. Outbreaks are sporadic, and the influence of viral dynamics in bats on their temporal and spatial distribution is poorly understood. We analyzed data on host ecology, molecular epidemiology, serological dynamics, and viral genetics to characterize spatiotemporal patterns of NiV dynamics in its wildlife reservoir, Pteropus medius bats, in Bangladesh. We found that NiV transmission occurred throughout the country and throughout the year. Model results indicated that local transmission dynamics were modulated by density-dependent transmission, acquired immunity that is lost over time, and recrudescence. Increased transmission followed multiyear periods of declining seroprevalence due to bat-population turnover and individual loss of humoral immunity. Individual bats had smaller host ranges than other Pteropus species (spp.), although movement data and the discovery of a Malaysia-clade NiV strain in eastern Bangladesh suggest connectivity with bats east of Bangladesh. These data suggest that discrete multiannual local epizootics in bat populations contribute to the sporadic nature of NiV outbreaks in South Asia. At the same time, the broad spatial and temporal extent of NiV transmission, including the recent outbreak in Kerala, India, highlights the continued risk of spillover to humans wherever they may interact with pteropid bats and the importance of limiting opportunities for spillover throughout Pteropus's range.
  10. Leder K, Openshaw JJ, Allotey P, Ansariadi A, Barker SF, Burge K, et al.
    BMJ Open, 2021 01 08;11(1):e042850.
    PMID: 33419917 DOI: 10.1136/bmjopen-2020-042850
    INTRODUCTION: Increasing urban populations have led to the growth of informal settlements, with contaminated environments linked to poor human health through a range of interlinked pathways. Here, we describe the design and methods for the Revitalising Informal Settlements and their Environments (RISE) study, a transdisciplinary randomised trial evaluating impacts of an intervention to upgrade urban informal settlements in two Asia-Pacific countries.

    METHODS AND ANALYSIS: RISE is a cluster randomised controlled trial among 12 settlements in Makassar, Indonesia, and 12 in Suva, Fiji. Six settlements in each country have been randomised to receive the intervention at the outset; the remainder will serve as controls and be offered intervention delivery after trial completion. The intervention involves a water-sensitive approach, delivering site-specific, modular, decentralised infrastructure primarily aimed at improving health by decreasing exposure to environmental faecal contamination. Consenting households within each informal settlement site have been enrolled, with longitudinal assessment to involve health and well-being surveys, and human and environmental sampling. Primary outcomes will be evaluated in children under 5 years of age and include prevalence and diversity of gastrointestinal pathogens, abundance and diversity of antimicrobial resistance (AMR) genes in gastrointestinal microorganisms and markers of gastrointestinal inflammation. Diverse secondary outcomes include changes in microbial contamination; abundance and diversity of pathogens and AMR genes in environmental samples; impacts on ecological biodiversity and microclimates; mosquito vector abundance; anthropometric assessments, nutrition markers and systemic inflammation in children; caregiver-reported and self-reported health symptoms and healthcare utilisation; and measures of individual and community psychological, emotional and economic well-being. The study aims to provide proof-of-concept evidence to inform policies on upgrading of informal settlements to improve environments and human health and well-being.

    ETHICS: Study protocols have been approved by ethics boards at Monash University, Fiji National University and Hasanuddin University.

    TRIAL REGISTRATION NUMBER: ACTRN12618000633280; Pre-results.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links